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Abstract

RR distributions with tails larger than the Gaussian
have been proved to be an independent predictor of car-
diac mortality in chronic heart failure patients. Within this
context, extreme value theory provides a powerful tool to
quantify the probability of a long RR occurrence, through
the statistical characterization of the RR tail distribution.
Here, tail characterization does not rely on the Gaussian
assumption but by fitting the Generalized Pareto distribu-
tion (GPd) to the excesses above a properly chosen high
threshold, and through the analysis of its corresponding
tail index, denoted asγ. The new approach is illustrated
with a 24-h RR recording from a normal subject and a
Congestive Heart Failure (CHF) patient. Wavelet anal-
ysis allowed to reconstruct one signal containing the RR
power traditionally related to respiratory rhythm (∼ 0.25
Hz) and another to sympathetic baroreflex activity (∼ 0.1
Hz). The fitted distributions for the normal subject do not
reject the hypothesis ofγ = 0 for both LF and HF while
γ > 0 for the CHF patient. Thus, the CHF distributions
are heavy-tailed, indicating a non-negligible probability
that a very long RR interval can occur. In a forthcoming
study, it will be assessed the impact of these preliminary
findings in CHF mortality prediction.

1. Introduction

Many literature studies demonstrate that abnormal HRV
measured over a 24-h period provides information on the
risk of subsequent death in subjects with and without struc-
tural heart disease [1]. More recently, large deviations
from a Gaussian RR distribution have been shown to be an
independent predictor of cardiac death after acute myocar-
dial infarction [2]. The RR distribution exhibits heavier
tails than does the Gaussian and, thus, the probability of
observing a long RR is higher than when assuming Gaus-
sianity. Within this context, extreme value theory can be
used to quantify the probability of a long RR occurrence,

by means of the statistical characterization of the RR tail
distribution. In this work, tail characterization does not
rely on the Gaussian assumption but in fitting the General-
ized Pareto distribution (GPd) to the excesses above a high
threshold, and through the analysis of its corresponding
tail index,γ. The GPd parameters are estimated by Peak-
over-Threshold (POT) procedure and standard errors are
approximated by reproducing POT in bootstrap replicates
of the original exceedance values.

It is known that frequency domain analysis of HRV re-
flects the modulation of the autonomic nervous system
(ANS) by means of the sympathetic and parasympathetic
activities, through the power evaluation in low frequency
(LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.40 Hz)
bands. In order to separate these activities, data was re-
sampled at 2 Hz and wavelet analysis allowed to recon-
struct one signal containing the RR power traditionally re-
lated to respiration (∼ 0.25 Hz) and another to sympathetic
baroreflex activity (∼ 0.1 Hz). Then, the tail index was es-
timated separately for each of these components of 24-h
HRV recordings.

2. Statistical Methods

This section provides a brief introduction to basic re-
sults on extreme value theory useful in the present stetting.
In particular, the approaches to model sample maxima and
exceedances of high thresholds are introduced. Further-
more, this section also describes the procedures to carry
out parameters’ estimation and statistical inference.

2.1. Extreme Value Theory

Let X = (X1, X2, . . . , Xn) be independent and identi-
cally distributed (i.i.d.) random variables (r.v’s) with un-
known underlying distribution function (d.f.)F and let
Mn(X) := max(X1, . . . , Xn). If for some constants
an > 0 andbn ∈ R,

lim
n→∞

P
{

a−1

n (Mn(X)− bn) ≤ x
}

= G(x), (1)
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for some non-degenerate functionG(x), thenF is in the
domain of attraction ofG (F ∈ D(G), in short) andG
must be the Generalized Extreme Value (GEV) distribution

G(x) ≡ Gγ(x) := exp

{

−

[

1 + γ

(

x− u

σ

)]

−1/γ
}

,

(2)
for all x such that1 + γ(x − u)/σ > 0, with location
u ∈ R, scaleσ > 0 and shape parameter (also called
tail index)γ ∈ R. The GEV distribution has three possi-
ble forms depending onγ, namely the Weibull (γ < 0),
Gumbel (γ = 0, readG0(x) as exp(−e−

x−u

σ ) for all
x ∈ R) and Fréchet (γ > 0) distributions. The Fréchet do-
main of attraction embraces heavy-tailed distributions with
polynomially decaying tails, whereas all d.f’s belonging
to Weibull domain of attraction are light-tailed with finite
right endpoint. The intermediate caseγ = 0 is of particu-
lar interest not only because of the simplicity of inference
within the Gumbel domain but also for the great variety of
distributions ranging from moderately heavy (such as the
lognormal distribution) to light (such as the Normal distri-
bution) having finite right endpoint or not.
An alternative approach to model sample maxima, which
is commonly known as the POT approach, is to consid-
erer the excesses (or exceedances) above a sufficiently high
threshold, sayµ. In this case, the limiting distribution is
the Generalized Pareto Distribution (GPD) defined as

Hγ(x) :=

{

1−
(

1 + γ x
σ∗

)

−1/γ
γ 6= 0

1− exp(− x
σ∗

) γ = 0
, (3)

whereγ andσ∗ are the shape and scale parameters, re-
spectively, withx > 0 if γ ≥ 0 and γ < 0 provided
that 0 < x < −σ∗/γ. This is the method which will
be adopted throughout the paper. It is important to stress
here that both GEV and GP distributions, although re-
sulting from different approaches, share the same shape
parameterγ and that the scale parameters are related by
σ∗ = σ + γ(µ − u). Traditionally, the threshold parame-
ter is chosen before fitting. As expected, threshold choice
hinges on balancing bias and variance. The threshold must
be sufficiently high to ensure that the asymptotics under-
lying the GPD approximation stand true, thus reducing the
bias. Nonetheless, the reduced sample size for high thresh-
olds increases the variance of the parameter estimates.

2.2. Parameter Estimation

Several methods have been proposed in the literature for
estimating the GPD parameters (see, e.g., [4,5]). Roughly
speaking, such methods can be grouped according to three
broad categories: moments-based, regression-based and
likelihood-based estimators. Briefly, the estimation pro-
cedure adopted in this work consists in the following two

steps: firstly, the threshold parameterµ is chosen to be the
lowest level where all the higher threshold in the sample
mean excess function

en(µ) =

∑n
i=1

(xi − µ) I(xi > µ)
∑n

i=1
I(xi > µ)

, (4)

which represents the empirical counterpart of the mean ex-
cess functione(µ) = E[X−µ|X > µ], are consistent with
a straight line, once the sample uncertainty is accounted
for. An upward trend in the line indicates a heavy-tailed
distribution ([8]). Secondly, after fixingµ, the parame-
tersσ∗ andγ are estimated by maximum likelihood. Note
that neither analytical estimates nor closed-form expres-
sions for the expected Fisher information can be found and,
thus, numerical procedures have to be employed. Statisti-
cal inference over the parameters was based on the asymp-
totic normality of maximum likelihood estimators. Stan-
dard error for the estimates are obtained by reproducing
the same scheme to a set of bootstrap replicates, each ob-
tained by resampling with replacement the original sample
of exceedances. The maximum likelihood estimators are
regular provided thatγ > −0.5.

3. Experimental data and preprocessing

The new approach is illustrated with two 24-h RR
recordings from PhysioBank [6]: a normal subject
(nsr001) and a Congestive Heart Failure patient (chf201).

The normal subject was selected from the nsr2db
database and corresponds to a 64 years old female. The
CHF patient was selected from the chf2db database and is
a 55 years old male with NYHA class III. In both nsr2db
and chf2db databases, the original ECG recordings were
digitized at 128 Hz, and the beat annotations were obtained
by automated analysis with manual review and correction
[6]. In this work, 24-h RR recordings were obtained from
the temporal difference (in sec) between consecutive Nor-
mal beats (i.e. NN intervals) after resampled at 2 Hz.

The RR temporal variabilities traditionally related to the
respiratory rhythm (∼ 0.25 Hz) and to sympathetic barore-
flex activity (∼ 0.1 Hz) were obtained by multiresolution
analysis through the computation of the maximal overlap
discrete wavelet transformation (MODWT) [7]. Shortly,
MODWT allows the decomposition of a given recording
Xt into a sum ofJ + 1 sub-series corresponding to each
time-scale, that is

Xt =

J
∑

j=1

Dt,j + St,J , (5)

whereDj represents the time series with the wavelet detail
j = 1, 2, . . . , J andSJ is the time series with the wavelet
smooth i.e., the remaining parcel of the decomposition.
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In this work, MODWT was implemented with Mal-
lat’s dyadic pyramid algorithm and Daubechies 4 mother
wavelet [7]. By considering 2 Hz sampling resolution, the
dyadic decomposition provided wavelet detailsDj with
frequency content around1/2j−1 Hz. Thus, third and
fourth MODWT scales (0.25 and 0.125 Hz), were con-
sidered as those representative of the power classically re-
lated to respiratory rhythm (∼ 0.25 Hz) and to sympathetic
baroreflex activity (∼ 0.1 Hz).
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Figure 1. 24-hours RR recording and MODWT details
classically related to sympathetic baroreflex activity (∼ 0.1
Hz,D4) and to respiratory rhythm (∼ 0.25 Hz,D3). Data
from (a) nsr001 subject and (b) chf201 patient.

4. Results

Original 24-hour RR recordings for the normal subject
and CHF patient are shown in Fig. 1. The MODWT details
classically related to sympathetic baroreflex activity (D4)
and to the respiratory rhythm (D3) are also presented. In
concordance with previous studies, the RR variability in
the CHF patient is typically lower than that observed for
the normal subject [3]. Moreover, the variability of theD3

detail is lower in the CHF patient than that evaluated in the
normal subject, which has been pointed out as an evidence
for decreasing parasympathetic activity during Congestive
Heart Failure condition [3].

Figure 2 displays the sample mean excess function
en(µ) against a set of threshold valuesµ. A closer look
to Figure 2 reveals that for the four cases threshold pa-
rameters falling within the intervalI = [0.002, 0.01] are
reasonable choices forµ. The procedure adopted to select
a suitable point estimate forµ and also for the remaining
GPd parameters comprises the following steps: (a) select
a value forµ in I; (b) estimate the shape and scale param-
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Figure 2. Mean excess plots obtained for the normal sub-
ject (nsr001) and the CHF patient (chf201), grouped by
MODWT detailsD4 (∼ 0.1 Hz) andD3 (∼ 0.25 Hz).
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eters by maximum likelihood; (c) perform a goodness-of-
test fit for assessing the accuracy of the GPd model; (d)
select another value forµ in I and repeat steps (b)-(c). Fi-
nally, select the value ofµ which provides the better fit to
the GPd model.

The results of the procedure described above are sum-
marized in Table 1. It can be observed that the estimates
of the tail index are larger for the CHF patient both in
LF and HF. The fitted distributions for the normal subject
exhibit γ = 0 for both LF and HF(−0.01 ± 0.03) and
0.04±0.02)whileγ > 0 for the CHF patient(0.12±0.06)
and(0.15±0.03), clearly supporting the idea that the CHF
distributions are heavy-tailed.

Table 1. Estimate and standard error (ste) for the GPd pa-
rameters obtained for the normal subject (nsr001) and the
CHF patient (chf201). Wavelet detailsD4 andD3 include
respecively the LF and HF power of the HRV recording.
The sample sizen is also displayed.

filename µ̂ γ̂ (ste) σ̂∗ (ste) n
nsr001 (D4) 0.003 -0.002 0.0008 630

(2.999e-02) (1.996e-06)
chf201 (D4) 0.003 0.1152 0.0009 232

(5.798e-02) (1.999e-06)
nsr001 (D3) 0.009 0.040 0.0018 1066

(2.327e-02) (1.998e-06)
chf201 (D3) 0.005 0.152 0.0014 1091

(2.752e-02) (1.999e-06)

5. Conclusion

In this work, the analysis of tail index in 24-h HRV
recordings is introduced and illustrated in data from a nor-
mal subject and a CHF patient. The fitted distributions
for the normal subject exhibitγ = 0 for both LF and HF
(−0.01± 0.03 and0.04± 0.02) while γ > 0 for the CHF
patient(0.12 ± 0.06 and 0.15 ± 0.03). Thus, the CHF
distributions are heavy-tailed, indicating a non-negligible
probability that a very long RR interval occur. In a future
study, the assessment of the impact of these preliminary
findings in mortality prediction will be analyzed in detail.
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