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Abstract 

High level of complexity makes characterization of 

wave conduction during Atrial Fibrillation (AF) very 

difficult. Here we aim to use statistical approach 

characterizing AF as a system with determined 

information flow using a concept of transfer entropy. 

Left and right atrial 60 s electrograms were recorded 

at high right atrium (HRA), coronary sinus (CS) and Left 

Atrial Appendage (LAA) in 42 patients undergoing 

catheter ablation of AF. Transfer entropy (TE) was used 

to asses causality calculating direction and extent of 

information flow between neighboring sites in the atria. 

TE was calculated between electrograms recorded along 

each catheter. Additionally, numerical analysis were 

performed on a set of unidirectionally coupled stochastic 

signals modeling electrical activity during AF. We found 

an asymmetry in information flow along the catheters. In 

HRA catheter, in general, information flows from 

proximal to distal portion of the catheter and in CS from 

the distal towards the proximal portion. The dominant 

flow of information from the base into the LAA was the 

most pronounced and in agreement with believed passive 

role of LAA in maintenance of AF.  

Information flow in the atria during AF is asymmetric 

and it is possible to determine the direction of the flow 

using concept of entropy transfer. 

1. Introduction

Atrial fibrillation (AF) is the most common and the 

most complex sustained arrhythmia [1]. The mechanisms 

of AF remain not fully understood and the treatment is 

suboptimal. Nowadays, one of the most frequently 

performed treatment procedures in patients with Atrial 

Fibrillation is catheter ablation [2], with the success rate 

up to 90% in paroxysmal AF and up to 64% in persistent 

AF (after multiple procedures) [3].  

Catheter ablation evolves rapidly. One of the 

important challenges for this method of treatment is 

improving the identification of ablation targets [2] which 

is extremely difficult because of high level of complexity 

of wave conduction. Here, we aim to identify targets of 

ablation procedure using statistical approach, 

characterizing AF as a system with determined 

information flow using a concept of transfer entropy. 

This measure has been mostly used to determine the 

neurological connections in spiking models in biological 

networks [4]. Nowadays, the entropy transfer method is 

widely used in other fields [5], an example of which is 

the approach used in this study. 

2. Methods

2.1. Study population 

In the experimental part, left and right atrial 

electrograms at three different locations (high right 

atrium - HRA, coronary sinus - CS and in left atrial 

appendage – LAA) were recorded for 60 s in 42 patients 

undergoing catheter ablation of AF. The procedure ended 

in success (spontaneous termination of arrhythmia) in 21 

patients and 21 underwent electrical cardioversion due to 

lack of response to ablation. For each patient in the CV 

group two ablation stages were identified: baseline 

(before the ablation) and POSTPVI (after isolation of the 

pulmonary veins), while the TERM group also included 

records of PRETERM stage (prior to termination of AF). 

For each patient and each ablation stage 16 

electrograms were available: 5 from catheter located in 

the coronary sinus, 2 from catheter placed high in the 

right atrium and 9 from LASSO catheter from left atrial 

appendage. For each catheter separable recordings for 

electrodes pairs of the catheter were available (for 

example for CS catheter CS 1-2, CS 3-4 etc.). The 

sampling frequency was 1 kHz.  

All the data was collected in the University Hospital 

Eppendorf, Department of Electrophysiology, Hamburg, 

Germany.  

To asses causality in the atria we used transfer entropy 

(TE). 

2.2. Transfer entropy calculation 

Transfer entropy was chosen as the method able to 

detect the directed exchange of information between 

two systems [6]. Since TE is defined on a binary data, we 

introduced three methods of signal transformation, one 
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based on raw electrogram and two based on intervals 

between consecutive activations. Here, we present results 

only of a method replacing local activation with ones and 

the rest of the signal with zeroes (see Figure 1). 

 
Figure 1. Illustration of chosen method of signal 

transformation. Each sample of the local activation (N-part) is 

converted to 1 and intervals between activations to 0.  

 

For obtained binary strings, transfer entropy was 

calculated according to formula [6]: 
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where: 

 

𝑖𝑛 
(𝑘)

= 𝑖𝑛 , 𝑖𝑛−1, … , 𝑖𝑛−𝑘+1 ,     𝑗𝑛
(𝑙)

= 𝑗𝑛 , 𝑗𝑛−1, … , 𝑗𝑛−𝑙+1 , 
 

where k is the number of samples of receiving signal (j) 

and l of sending signal (i), based on which particular 

probabilities (p) are calculated. 

 

Transfer entropy was calculated between pairs of 

electrograms recorded by each catheter.  

Additionally, we used TE to quantify information flow in 

a chain of unidirectionally coupled oscillators with added 

noise, according to the formula: 

… 

CL5(i+1)=CL5(i)+η+k6->5 *(CL6(i)-CL6(i-1)) 

CL6(i+1)=CL6(i)+SD*η 

CL7(i+1)=CL7(i)+η +k6->7 *(CL6(i)-CL6(i-1)) 

... , 

 

where i is the sample number, CL (cycle length) 

corresponds to time interval between consecutive 

activations, η is the Gaussian noise of standard deviation 

SD (set as SD=2) and k is the coupling parameter (set as 

k=0.5). 

 

2.3. Transfer Entropy graphical 

presentation 

Analysis of information flow was performed on a 

group of signals (recorded by individual catheter). For 

each pair of signals, value of TE was calculated. The 

results are presented using a square array denoted as 

Causality Diagram. An example is shown in Figure 2. 

In order to make the interpretation of Causality 

Diagram easier, we introduced Causality Graph (Figure 

3). Each node in the graph represents one signal and 

arrows between the nodes indicate the direction of 

information flow. In order to simplify the graph, only the 

most important directions of flow were presented. 

 

 
Figure 2. Example of Causality Diagram. It graphically presents 

values of transfer entropy in the group of signals. Colors 

correspond with the quantity of information that is transferred 

in each individual pair of signals (from the raw to the column 

signal). 

 

 
Figure 3. Example of Causality Graph. Each node corresponds 

to one signal. The arrows indicate the direction of the 

information flow. 

 

 
 

 

Figure 4. A schematic diagram presenting a set of 

unidirectionally coupled oscillators modeling intervals between 

consecutive activations at neighboring sites. Central element 

(CL6) is a "conductor" since as it is the only element 

influencing neighboring units without being influenced by any 

other element of the system 

2.4. Artificial electrograms 

To test whether TE method could be used in assessing 

causality in signals having properties of similar to 
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electrograms recorded during Atrial Fibrillation, we 

generated the chain of synthetic signals. Signals were 

meant to model the cycle length variation in the 

electrograms recorded during Atrial Fibrillation. 

    AF is a very complex process, but with not fully 

understood dynamics. For this reason, the intervals 

between activations were modeled as a chain of 

unidirectionally coupled oscillators with added noise. 

In Figure 4 a schema of coupling is presented. The 

middle signal (CL6) is a conductor and it controls other 

signals. 

 

3. Results 

3.1. TE calculated on artificial signals 
 

 Causality Diagram for chain of synthetic 

electrograms is presented in Figure 5. Causality can be 

noticed only between the neighbors, in a strictly defined 

direction, according to the structure of the model 

(unidirectional coupling; see Figure 4). 
 

 
Figure 5. Causality Diagram for artificial signals corresponding 

with assumed coupling in the group of 11 signals presented in 

Figure 4. 

 

3.2. TE calculated using patient data 

We found an asymmetry in information flow along the 

catheters. Averaged results for the group of patients show 

that in HRA catheter information flows from proximal to 

distal portion of the catheter (from bottom to top of the 

atria) and in CS from the distal towards the proximal 

portion (from left to right atria), see Figure 6.  

Figure 7 presents an example of information flow across 

the atria in an individual patient, where conductor (the 

element from which majority of the information is 

flowing) cannot conductor was found and identified as 

electrogram CS9-10). 

    In Figure 9 an example of information flow in Left 

Atrial Appendage is presented. Signals were measured 

with LASSO catheter (which is curled into circular shape 

inside the appendage). Averaged results show that 

information propagates from the appendage entrance 

(corresponding to location of electrograms LAA 9-10 

and LAA 1-2) to its distant part (where electrograms 

LAA 5-6, LAA 6-7 were recorded).  

 
(6a) 

 
(6b) 

 
Figure 6. Example of Causality Diagram (6a) and Causality 

Graph (6b) for averaged results of all patients from group 

TERM, POSTPVI stage. There is dominant information flow 

from proximal to distal portion of the catheter in HRA 

and in CS from the distal towards the proximal portion. 

 
(7a) 

911



 
(7b) 

 

Figure 7. Example of Causality Diagram (7a) and Causality 

Graph (7b) for a measurement in a patient, electrodes from 

HRA and CS. Information flows from the electrode CS 9-10 to 

electrodes CS 1-2, CS 3-4, CS-5-6. Based on the dominant 

direction of conduction flow, electrode CS9-10 was identified 

as a conductor. 

 

 
 

(8a) 

 
(8b) 

 

Figure 8. Example of Causality Diagram 8(a) and Graph (8b) 

for a measurement in a patient using LASSO catheter in Left 

Atrial Appendage. In this case, a conductor is not a single 

electrode but a group of electrodes (LAA 8-9, LAA 9-10, LAA 

1-2, LAA 2-3, LAA 3-4) from which there is an unidirectional 

information flow to remaining electrodes. 

 

4. Discussion 

TE diagrams calculated using artificial signals show 

clear direction of information flow from the center of the 

chain toward its ends. 

We found a clear directionality of information flow in 

the atria during Atrial Fibrillation. In general, in HRA, 

information flows from the bottom to the top of the atria 

and in CS from the left to right atria. The dependencies 

found in Left Atrial Appendage are the most pronounced 

and they are in agreement with believed passive role of 

LAA in maintenance of AF. Note however, that for each 

patient the specific pattern of the flow of information 

varies. Exploration of the causes of this variability and 

relation with atrial structural pathology is an interesting 

direction of further research. 

 

5. Conclusions 

Information flow in the heart is asymmetric and it is 

possible to determine the direction of the flow using 

concept of transfer entropy. Analysis of the information 

flow may be an useful tool in identification of the atrial 

regions maintaining AF. 
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