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Abstract 

The electrocardiogram (ECG) is one of the most 
reliable information sources for assessing cardiovascular 
health and training success. Since the early 1990s, the 
heart rate variability (HRV), namely the variation from 
beat to beat, has become the focus of investigations as it 
provides insight into the complex interplay of body 
circulation and the influence of the autonomic nervous 
system on heartbeats. However, HRV parameters during 
physical activity are poorly understood, mostly due to the 
challenging signal processing in the presence of motion 
artefacts. To derive HRV parameters in time (heart rate 
(HR)) and frequency domains (high frequency (HF), low 
frequency (LF)), it is crucial to reliably detect the exact 
position of the R-peaks. We introduce a full algorithm 
chain where a sophisticated filtering technique is 
combined with an enhanced R-peak detection that can 
cope with motion artefacts in ECG data originating from 
physical activity. 

1. Introduction

Since its development in the 19th century, the 
electrocardiogram of the heart (ECG) has been crucial to 
determine functions and failures of the heart. On the basis 
of modern ECG recordings it is possible to detect 
physical deformations of the heart (e.g. hypertrophy), as 
well as arrhythmia and extra systoles [1]. 

Recently, the interpretation of the heart rate variability 
(HRV), namely the temporal variation between individual 
beats of the heart, has become more and more interesting. 
For physiological interpretation, the exact detection of 
R-peaks and RR-intervals has become of crucial 
importance [2]. The subsequent transformation of 
RR-intervals into frequency domain reveals different 
frequency bands, known to be directly connected to the 
activation of the sympathetic and parasympathetic 
nervous system, thus the central nervous system [3]. 

Especially during physical activity, the ECG suffers 

from numerous motion artefacts, like random or 
stochastic noise leading to a distortion of the ECG and a 
significant reduction of the signal-to-noise ratio (SNR). 
Common ECG algorithms developed for clinical purposes 
are not designed for this purpose and therefore often show 
high false alarm rates, effectively causing 
misinterpretation of HRV parameters. 

Various techniques have been proposed to cope with 
motion artefacts, in particular a set of filter techniques. 
Many algorithms use a high pass Finite Impulse Response 
(FIR) filter. Here, the output is taken after the FIR 
transfer is combined with a delay based on an integral 
number of the filter, offering a linear phase response and 
thus providing an undistorted ECG signal. However, the 
FIR filters needs a large number of filter coefficients to 
provide adequate signal characteristics, resulting in 
increased computational costs. Especially when it comes 
to mobile applications the requirement for low power 
consumption very much restricts the available computing 
resources and computational costs become increasingly 
important [4,5]. 

We suggest using a bidirectional Infinite Impulse 
Response (IIR) filter instead of a FIR filter. The recursive 
IIR filter offers a high quality output using fewer filter 
coefficients and therefore noticeable fewer computing 
time. The disadvantage of introducing a phase shift can 
be nullified by applying the filter bidirectional. To 
overcome the perturbing effects of motion artefacts, we 
introduce, subsequent to the filtering step, an R-peak 
detector based on a modified zero crossing algorithm to 
detect R-peaks. Here a set of possible R-peaks has to run 
through an additional plausibility routine which takes into 
account several temporal as well as morphological and 
contextual features to robustly decide whether the 
observed event belongs to a real R-peak or is an artifact. 
In this paper, we show that these enhancements can raise 
the detection rate of R-peaks in the special case of mobile 
recorded data. We compare our algorithm with the  open 
source Hamilton algorithm [6]. 

917ISSN 2325-8861 Computing in Cardiology 2015; 42:917-920.



2. Materials and methods 

We compare our algorithm against the open source 
version of the Pan-Tompkins Algorithm as provided by 
Hamilton [7,6]. The Hamilton variant is developed to 
detect R-peaks from a clinical single-channel ECG 
device. The algorithm provides a positive predictive value 
of 96.48 % on the MIT/BIH arrhythmia database; 
however we use a self-assembled data base to be able to 
test the algorithms on data with motion artefacts. 

 
2.1. Algorithm overview 

The complete algorithm proposed in this paper consists 
of 4 stages. The raw signal is filtered with an analog band 
pass filter on the acquisition hardware. After the signal is 
digitized by an analog digital converter (ADC), it is 
filtered with a digital 50 Hz notch filter prior to a forward 
and backward IIR band pass filter (Fig. 1). Finally, the 
signal is further processed in the R-peak detection 
algorithm (Fig. 2).  

 

 
Figure 1: Algorithm Overview. The ECG raw signal is 
filtered with an analog band pass directly on the hardware. 
Afterwards, the signal is transformed into a digital signal by an 
ADC. After a digital band pass filter, the signal is filtered by an 
IIR filter in forward and backward direction, followed by the 
R-peak-detection.  

Analog band pass filter: The frequency range of a 
normal ECG is traditionally defined between 0.67 Hz and 
40 Hz. Due to the fact that we measure the ECG signal on 
a wearable system, we suffer from many artefacts like 
motion artefacts but also artefacts introduced by wires 
and electrostatic charge introduced by the textile 
components. To eliminate these mostly high frequent 
signals, the band pass filter has a range from 4 - 27 Hz 
and -10 dB.  

 
Notch filter: To eliminate power line interference, we 

apply a 50 Hz Single Notch filter to compensate for 
electromagnetic irradiation. 

 
IIR forward-backward filtering: After the raw signals 

are digitalized they are filtered with a three sections 
second order Butterworth IIR filter with cutoff 
frequencies of 8 Hz and 45 Hz at 3 dB. 

Due to the nonlinear nature of the IIR filter a phase 
shift is introduced. To eliminate the phase shift, the 
window of n forward-filtered-samples is filtered in 
backwards direction with an IIR filter with the exact same 
filter coefficients as before. One advantage of an IIR filter 
over an FIR filter is the reduced number of filter 
coefficients which results in less operation per sample to 
reach comparable results. 
 

R-peak detection: Subsequently to the filtering process 
QRS events are detected based on a zero-crossing QRS- 
detection algorithm suggested by Köhler et al. [8] and 
evaluated for mobile applications in Tantinger et al. [9]. 
In order to keep the sensitivity of the zero crossing 
detector under varying physical stress and therefore heart 
rates, we modified the algorithm by dynamically 
adjusting the parameter ߣ௵ described as constant in [8] 
and which tunes the adaptivity i.e. the response time of 
the event thresholding to changing heart rates. The 
threshold adaptivity is in our case updated according to  

௵ߣ 	ൌ 	݄௠௔௫ െ	
ఒ೭,೘ೌೣି	ఒ೭,೘೔೙

௛೘ೌೣି	௛೘೔೙
	ሺ݄ሺݐሻ െ ݄௠௜௡ሻ, 

where ݄ሺݐሻ (݄ ∈ ሾ݄௠௜௡;	݄௠௔௫ሿሻ	is the heart rate at time ݐ 
in beats per minute (bpm) and ߣ௵ ∈ ሾߣ௵,௠௜௡;  ௠௔௫ሿ. To,௵ߣ
cope with the low SNR we further extend the algorithm 
with an additional processing step which tracks the 
history of R-peaks over time to increase the reliability of 
the detection. Basically, this filter is an adaptive 
prediction-correction filter which iteratively transforms a 
set of R-peak candidates into a new set of robust R-peaks, 
based on an average model of an R-peak (Fig.2). The 
algorithm works as follows: 

Input is a set of R-peak candidates from the zero 
crossing step and a prediction about the next R-peak 
location which is estimated by means of a lower and an 
upper bound for the next regular R-peak. The set of 
candidate R-peaks is labeled into subsets of early 
systoles, regular systoles and far systoles, based on the 
prediction of the next R-peak. If there are extrasystoles, 
the best match within the respective set is accepted as 
robust R-peak. As best match we define the candidate 
with highest R-peak response. If there are no extra 
systoles found, the best match within the set of regular 
systoles is selected. Given there are only far systoles 
found, the best match within this class is accepted only if 
no regular systole was missed by the zero-crossing 
R-peak detector. To ensure this, another maximum-
minimum search for a potentially missed regular R-peak 
is performed on the backward filtered signal within the 
expected time frame. Given that another R-peak candidate 
is found, and accepted by the classifier, this candidate is 
preferred to the far systole as new robust R-peak. 

Whenever an R-peak is accepted to the set of robust 
peaks, all candidates found prior to the accepted one are 
discarded. No R-peak candidates following the accepted 
R-peak are lost. The model is updated and a new iteration 
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in the process described above is performed until the set 
of candidates runs empty or the cumulative RR-interval 
time of candidates falls below the predicted upper bound 
RR interval. 

Further note that the remaining candidates may be 
classified differently in the next iteration because the 
prediction as well as the model is updated with every 
accepted R-peak. To bootstrap our algorithm, the first ten 
R-peak candidates are accepted without verification 
against model and prediction. As R-peak we consider a 
feature vector ݔറ which is extracted from the backward 
filtered ECG signal within the QRS event frame received 
from the zero crossing detector (Fig. 2).  
 

 
 
Figure 2: R-peak-algorithm overview. The filtered ECG 
signal is handed over to the Zero-Crossing step, where a first 
classification is performed. Next, the number of R-peak 
candidates is collected and further classified by comparison with 
a given model. Robust R-peaks are subsequently used to update 
the model. Rectangular boxes resemble states of processing, 
while rounded boxes are signals. Arrows visualize data flow. 
 
2.2. FitnessSHIRT 

    Mobile ECG data is recorded with the Fraunhofer IIS 
FitnessSHIRT. Two textile ECG sensors are integrated in 
the shirt on both sides of the thorax in order to derive a 
single-channel ECG. The data is acquired at a sampling 
rate of 1024 Hz. Long-time data acquisition is realized on a 
microSD card, connected to the main module and attached 
to the shirt. An integrated Bluetooth module allows 
transmitting the raw data to a portable device (smartphone 
or tablet) or a PC for real-time visualization and post-
processing. 
 
2.3. Test protocol and data base 

All persons were provided with a well-fitting 
FitnessSHIRT. The test protocol is adapted from a Bruce 
test. The test persons had to perform 2 exercises. The 
running exercise consisted of a 5 minute running phase at 
10 km/h followed by an increase of 1 km/h every 3 

minutes until test persons feel exhausted. The ergometer 
exercise began at 130 W load followed by an increase of 
30 W every 3 minutes until test persons feel exhausted. 
Care was taken that 65-70 rpm was kept constantly. 

All persons were healthy males of average fitness level 
and average age of 31.6 years. We analyzed running data 
from 10 persons and ergometer data from 25 persons. 
ECG data were manually annotated. 
 
3. Results and discussion 

As a measure of comparison, we evaluate the True 
Positive Rate (TPR) and the Positive Predictive Value 
(PPV), defined as  

ܴܶܲ ൌ ܶܲ	/	ሺܶܲ ൅  ሻܰܨ
ܸܲܲ ൌ ܶܲ	/	ሺܶܲ ൅  ሻܲܨ

with  
TP: True Positive  total number of correct detections, 
FP: False Positive  total number of false detections, 
FN: False Negative total number of missed detections.  

 
As a consequence of phase delays introduced with the 
filtering, detected R-peaks often do not exactly match the 
annotation. Therefore, we choose an acceptance radius 
around each annotation and employ nearest neighbor 
search prior to distance thresholding to match annotations 
to detections and to decide for each of above cases. 
Comparing 20 sets of data with about 8193 hand 
annotated R-peaks, we find that our algorithm has a TPR 
of 90.0 % (on ergometer data), when the acceptance 
radius is chosen for three samples, corresponding to an 
accuracy of 6 ms. The Hamilton algorithm has in this case 
only a TPR of 62.2 %. If we increase the tolerance radius, 
the PPV of both algorithms raises (Tab. 1). 
Our algorithm reaches a TPR of over 99 % for an 
acceptance radius bigger than 8 whereas the Hamilton 
algorithm reaches comparable detection rates earliest at a 
radius of 15, corresponding to ~30 ms. This shows that 
our algorithm performs almost twice as accurate as 
Hamilton’s algorithm under the conditions mentioned. 
Note, that the algorithm in [7] was established to find the 
position of QRS complexes, not necessarily R-peaks. If 
the aim is however, to derive HRV features, the exact 
R-peak position has to be known. Moreover, the 
Hamilton was developed to evaluate clinical ECG signal 
whereas we use mobile recorded data with motion 
artefacts. 
 
4. Conclusion 

We conclude that our R-peak detection algorithm 
outperforms the reference method in situations when 
ECG signals are superimposed with motion artifacts. 
However, further optimizations might be necessary when 
activity data is not measured in laboratory conditions.

919



 
Figure 3: Processing steps as performed by Hamilton (left) and our algorithm (right) on a segment record over 4 seconds of 
training activity.  Both algorithms perform multiple filtering steps before R-peaks are detected. When the signals are forged by motion 
artefacts (e.g. at ~2 s), the proposed algorithm still reliably detects the R-peaks, demonstrating the robustness of our method. Note that 
ECG signals were band pass filtered on the hardware.  
 

 TPR 
ሺݎ ൌ 3ሻ 
running 

TPR ሺݎ ൌ
3ሻ 

ergometer 

TPR 	
ሺݎ ൌ 8ሻ 
running 

TPR 
ሺݎ ൌ 8ሻ 

ergometer 
Hamilton 25.3 % 62.2 % 65.7 % 86.1 % 

Ours 84.6 % 90.0% 98.2 % 99.2 % 
 

 PPV 
ሺݎ ൌ 3ሻ 
running 

PPV 
ሺݎ ൌ 3ሻ 

ergometer 

PPV 
ሺݎ ൌ 8ሻ 
running 

PPV 
ሺݎ ൌ 8ሻ 

ergometer 
Hamilton 23.9 % 60.7 % 63.3 % 84.5 % 

Ours 81.2 % 88.0 % 95.2 % 97.2 % 
 
Table 1: True positive rate (TPR) and Positive Predictive 
Value (PPV) of our algorithm compared to Hamilton. We 
tested with different acceptance radii (ݎ in samples) and 
distinguished between running experiments and ergometer 
experiments. In all cases our algorithm outperforms the 
reference method. 
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