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Abstract

Registering and combining anatomical components
from different image modalities, like MRI and CT that have
different tissue contrast, could result in patient-specific
models that more closely represent anatomical structures
than a model based on either modality alone. In this study,
we combined a pair of CT and MRI scans of a pig tho-
rax from two different subjects to make a tetrahedral mesh.
Registration of the images is a challenging step in any
multimodal imaging and we compared four different regis-
tration techniques including rigid, affine, thin plate spline
morphing (TPSM), and iterative closest point (ICP), to su-
perimpose the segmented bones from the CT scan on the
soft tissues segmented from the MRI. We achieved best vi-
sual results with TPSM and affine techniques, which both
resulted in the bones remaining close to, but not overlap-
ping, important soft tissue. We also compared simulated
results from computing ECGs and defibrillation potentials
based on the original MRI model and combined geometric
models of the torso. Both qualitatively and quantitatively,
the combined geometric models performed similarly to the
original MRI model.

1. Introduction

Generating image based models for simulation can be
difficult due to limitations of different image modalities.
Each modality has strengths and weaknesses for different
tissue types. For example, magnetic resonance imaging
(MRI) has high soft tissue contrast but lacks bone contrast
to robustly segment bones. X-ray computed tomography
(CT), by comparison, has high bone contrast, but the heart,
lungs, and blood volume are poorly resolved.

Creating models from both MRI and CT, has the advan-
tage of leveraging the strengths of both to achieve higher
accuracy than from either modality alone. Such improve-
ments are especially valuable for bioelectric field simula-
tions in which soft tissue and regions of bone are in close
proximity. Previous dual modality examples include mod-
eling of transcranial electrical and magnetic stimulation in

the brain[1] and we anticipate similar improvements in car-
diac bioelectricity applied to ECG Imaging [2] and to sim-
ulation of defibrillation [3, 4].

In this study, we addressed a particularly challenging
problem of aligning images from MRI and CT scans from
different subjects. We created mutli-modality, tetrahedral
meshes for cardiac bioelectricity simulations by register-
ing the bone geometry from a CT scan of one pig with
the MRI segmentation of a second. Techniques included
thin plate spline morphing (TPSM), affine, rigid, and it-
erative closest point (ICP) [5] registration and the results
were compared to the segmentation from the MRI. In order
to evaluate the impact of the registration errors from this
dual-modality, dual-subject approach, we then compared
ECG and cardiac defibrillation simulation results between
the combined model and one derived only from MRI.

2. Methods

Figure 1 shows the pipeline for developing the multi-
modality, tetrahedral meshes using the open source soft-
ware from the Center for Integrate Biomedical Computing
(www.sci.utah.edu/cibc).

Two adult pigs were scanned, one with MRI and the
other with CT and the images were segmented sepa-
rately into different tissue types using Seg3D [6]. Using
Cleaver2 [7], we then created tetrahedral meshes that in-
cluded the tissue regions associated with the torso, heart,
lungs, blood, and bones.

For image based registration, we identified a total of 70
correspondence points throughout the entire geometry, but
mainly focused on the ribcage, sternum, heart and other
stationary locations within the torso. A subset of 37 points,
selected using the Ransac algorithm [8] that identifies out-
liers in data given a certain fitting technique (rigid, affine,
etc.), was used to perform affine, rigid, and TPSM regis-
tration techniques. We applied an additional registration
approach, known as ICP [5], to align the geometries based
on the meshes from the two image sets.

The results of the different registration techniques were
evaluated quantitively using the DICE coefficient [9],
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Figure 1: A general pipeline for generating combined image-based tetrahedral meshes for simulation.

Hausdorff distance [10] and RMS error metrics. All reg-
istrations and metric computations were performed using
custom programs written in MATLAB (The MathWorks,
Inc.), except for Affine and TPSM, which were imple-
mented in SCIRun[11].

We generated multi-modality models using the methods
that performed the best in terms of the image-based met-
rics: affine and TPSM. During this process, implemented
within Seg3D, the MRI bones were added to the torso layer
in the MRI segmentation. The registered CT bones seg-
mentation was removed from the MRI torso layer and over-
lap between all layers removed. The MRI thorax segmen-
tations now contained the registered CT bone segmenta-
tion instead of the original MRI bones. Tetrahedral meshes
were created from the cropped, combined-modality seg-
mentations using Cleaver2.

In order to evaluate the impact of errors in geometric
alignment between the two modalities on our target appli-
cations, we carried out simulations of the ECG and inter-
nal cardiac defibrillation (ICD) using the generated affine
multi-modality, TPSM multi-modality, and, to serve as
the baseline, the original MRI mesh. To isolate the ef-
fects of bone we carried out each simulations again with
the bone conductivity set to the torso conductivity. The
source of heart potentials for the ECG model [12] were
recorded epicardial potentials from a canine heart mapped
onto the MRI based model of the heart surface. We then
computed the associated body-surface ECGs using the For-
ward/Inverse Toolbox in SCIRun [12]. The ICD simula-
tions followed a standard procedure [3] of placing elec-
trodes within each model using modular software within
SCIRun. Defibrillation thresholds and the torso potential
distribution were then calculated. Error metrics included
percent error, correlation coefficient, and RMS error.

3. Results

Quantitative error metrics for registration are displayed
in Table 1. Comparatively, the TPSM-registered bones
have the smallest tissue overlap, highest bone overlap,
highest Dice coefficient, and a lower RMS error. Though
rigid registration exhibited the lowest Hausdorff distance,
the method also had the highest tissue overlap and lowest
bone overlap. Both ICP and affine registration quantita-
tively performed similarly, though affine had a higher Dice
coefficient and higher bone overlap while ICP had a lower
RMS error and tissue overlap.

Table 1: Error metrics for different registration techniques.

Error Metric TPSM Affine Rigid ICP
Dice Coefficient 0.23 0.11 0.07 0.10
Hausdorff Distance (mm) 165 172 118 150
RMS Error (mm) 25.3 32.8 31.8 23.8

Qualitative comparison indicated that both TPSM (Fig-
ure 2a) and affine (Figure 2b) align the general spinal, ster-
num and ribcage curvatures well. Bones from both meth-
ods remained close to, but not overlapping, soft tissue of
the heart, lungs, and blood volume. Both the rigid (Fig-
ure 2c) and ICP (Figure 2d) registration showed noticeable
deviation from the MRI bones, especially along the spine,
leading to overlap with the heart and lungs. All methods
resulted in noticeable deviation of the head and legs.

Both multi-modality meshes, with or without bones,
produced similar results to the original MRI mesh in the
ICD (Figure 3) and ECG simulations (Figure 4). How-
ever, the boneless MRI preformed most comparably to the
original MRI in both simulations. The ICD simulations
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(a) TPSM (b) Affine (c) Rigid (d) ICP

Figure 2: CT Bones registered usingTPSM, rigid, affine, and ICP techniques compared to the original MRI Bones.

yielded defibrillation thresholds of 8.1 J, 8.2 J, and 9.7
J for the original MRI, affine mutli-modality, and TPSM
mutli-modality mesh, respectively. Error metrics for the
ICD simulation are shown in Table 2 and the ECG simula-
tions in Table 3.

4. Discussion

The tetrahedral meshes generated using both TPSM and
affine registration techniques were of high enough quality
to use in simulated applications that compared in perfor-
mance to the original MRI Mesh (Figures 3 and 4). Other
registration techniques may also be effective for generat-
ing multi-modality meshes given minimal soft tissue over-
lap in the region of the heart and lungs. Preliminary data
suggests (not shown here) that performing registration on
cropped meshes that neglect the legs and head, may lead to
better error metrics and less soft tissue overlap around the
domain of the heart. Additionally, registration techniques
could be used sequentially. For example, TPSM could be
followed by ICP to get further refinement of the registered
CT Bones.

Table 2: Error metrics for ICD Simulation:

Method Correlation Percent RMS
Coefficient Error (%) Error (V)

with bones:
TPSM 0.98 4.5 57
Affine 0.98 3.9 53

without bones:
MRI 1.0 0.018 3.5
TPSM 0.98 4.4 56
Affine 0.98 3.8 52

Table 3: Error metrics for ECG Simulation

Method Correlation Percent RMS
Coefficient Error (%) Error (mV)

with bones:
TPSM 1.00 0.22 0.05
Affine 1.00 0.23 0.05

without bones:
MRI 1.00 0.13 0.04
TPSM 1.00 0.26 0.05
Affine 1.00 0.25 0.05

Our preliminary results suggest that the impact of in-
cluding realistic bone geometry on simulation results was
minimal, which suggests that including bones in a torso
model may not yield significant improvements. However,
more extensive comparison will be necessary to evaluate
this initial finding, including further evaluation of mesh
quality and interpolation errors that may impact simulation
results.

In general, taking advantage of the strengths of each
modality by generating mutli-modality meshes is feasible.
The pipeline we developed can generate torso geometries
from a variety of modalities possibly even using different
specimens. This finding suggests that patient specific mod-
els could be created using an arbitrary CT scan of an alter-
native patient, thus limiting radiation exposure and possi-
bly improving clinical impact.

Acknowledgements

This project was supported by the National Institute of
General Medical Sciences of the NIH under grant P41
GM103545-17.

955



Original MRI TPSM Affine

Figure 3: ICD defibrillation discharge potentials of the original torso mesh (first) compared to the TPSM composite mesh
(second) and affine composite mesh (third) given the same ICD placement and an initial 500 V shock.

Heart Potentials Original MRI

TPSM Affine

Figure 4: ECG Forward simulations show heart surface
potentials (top left) and corresponding surface potential
estimation on the original MRI mesh (top right), TPSM
composite mesh (bottom left), and affine composite mesh
(bottom right).
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