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Abstract

Cardiac electrical imaging, reconstruction of cardiac
electrical activity from body surface potentials, has gained
increasing clinical interest as a noninvasive imaging
modality for underlying electrophysiological phenomena.
We have previously presented an approach using 1) a
transmural regularization to improve the joint reconstruc-
tion of electrical potentials on both the inner and outer
surface of the ventricles; and 2) a nonlinear low-order dy-
namic spline-based parameterization to provide temporal
regularization. This approach was tested for localizing en-
docardial pacing locations obtained from healthy hearts
during catheter-based stimulation, using imprecise tho-
rax geometry derived from limited computed tomographic
scans. Results were promising, but the reconstructed so-
lutions were overly smooth in space and time. Recently,
L1-norm based spatial sparsity methods such as total-
variation regularization have been reported to return more
realistically sharp solutions in cardiac electrical imaging.
In this paper, we compare and evaluate the performance
of L2-norm based Tikhonov and L1-norm based total-
variation regularization in conjunction with the spline pa-
rameterization and the transmural regularization. Numer-
ical experiments were conducted on three subjects, each
with multiple (∼ 20) endocardial pacing sites and evalu-
ated against true pacing locations reported by the CARTO
catheter mapping system. Variability was observed in the
performance of the two methods across both pacing sites
and subjects. However, the dependence of the results on
subjects and ventricular pacing locations suggests that
there is some correlation between the results and the spe-
cific geometry in each case. In our future work, we will
investigate the approach of automatically inferring an op-
timal regularization norm from the data rather than fixing
it a priori.

1. Introduction

Electrocardiographic imaging (ECGI) is a technology to
reconstruct of cardiac electrical activity from body surface
potentials which has gained increasing clinical interest as a
noninvasive modality for imaging underlying electrophysi-
ological phenomena. However, it solves an ill-posed prob-
lem and small perturbations in the measurements can pro-
duce big variations in the solutions. To overcome this is-
sue, it is necessary to introduce prior knowledge about the
solution in the form of regularization. This can be in the
form of spatial or temporal constraints.

In time, one approach is to to characterize the temporal
behavior of the signal and impose it on the solution [1–
3]. With that objective, we developed a method that non-
linearly approximates the multi-electrode ECG signal in
time to reduce the presence of noise [4].

In space, the prior is often introduced in the optimization
objective which solves a least-squares (LSQ) minimization
between the ECG measurements (y(t)) and the unknown
heart potentials (x(t)), plus a regularization term (r(x))
that introduces the prior knowledge (Equation 1).

min
x(t)
‖y(t)−Ax(t)‖22 + λr(x(t)) (1)

This optimization problem, balances the LSQ fitting term
against the regularization term r(x(t)). Which type of
prior is being added depends on the function r(·), and with
how much weight depends on the regularization parameter
(λ) —typically chosen with the L-curve method [5].

There has been plenty of research in the ECGI commu-
nity to determine what is the best regularization term to
describe the electrical activation on the heart [6]. A clas-
sical approach is to use Tikhonov regularization [5]. In it,
the regularization term is the L2 norm of the solution times
the regularization matrix (R) (Equation 2).

min
x(t)
‖y(t)−Ax(t)‖22 + λ‖Rx(t)‖22 (2)
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In this approach, the regularization matrix describes the
spatial characteristic to be minimized. Typical options are
identity (0th order Tikhonov), gradient operator (1rst or-
der) and Laplacian operator (2nd order). Another regular-
ization approach that has gained lots of recent attention and
which has shown to provide sparser solutions is Total Vari-
ation [7–9]. In this method the regularization term is an L1
norm of the spatial gradient of the solution (Equation 3).

min
x(t)
‖y(t)−Ax(t)‖22 + λ‖Dx(t)‖1 (3)

There has been work in comparing spatial approaches
in static solutions in time [9]. However, very few stud-
ies looked at the the effects of joined spatial and temporal
regularization [10]. Here we compare two competing ap-
proaches for spatial regularization combined with a single
non-linear temporal regularization approach. We test them
in their capacity to estimate the point of earliest activation
on the heart when applied to human data from pacing ex-
periments.

2. Methods

In this work we use inverse methods that result from
the combination of one of two spatial regularization ap-
proaches and a temporal regularization.

In space, the two approaches are modifications of the
classical LSQ objective to minimize the gradient of the
potentials on the heart in the regularization term. To ap-
proximate the gradient, both approaches use an operator
that estimates the volumetric gradient at each point on the
heart using a weighted neighborhood around it. The spe-
cial characteristic of this gradient operator is that it in-
cludes nodes across the wall to determine the neighbor-
hood, and thus does joint endocardial/epicardial regular-
ization in surface geometries [4]. The difference between
the two approaches that we compare is the measure used
to calculate the norm of the gradient:
• L1 norm: This norm consists of the sum of absolute
values and it is often used to solve inverse problems where
the solutions are expected to be sparse [11].
• L2 norm: This norm is the classical sum of squares or
euclidean norm and, counter to L1, this norm tends to pro-
duce smooth solutions.

In time, we use a temporal characterization of the sig-
nal that uses a multi-dimensional spline interpolation [4].
This method jointly approximates the potentials in all elec-
trode with a B-spline function. To do so, it ignores the time
stamps of the measurements and automatically determines
a ”time-warp” that replaces them. With this approach, this
method iteratively finds the best set of knot points Ky and
their temporal mixing s(t) to fit the ECG recordings (y(t))
with the interpolation (Equation 4).

y(t) = Kys(t) (4)

Note that the knot points Ky are themselves potential dis-
tributions on the torso and thus it is possible to calculate
their corresponding potentials on the heart Kx with any
inverse method. With this reconstructed knot points, one
can approximate the temporal sequence of potentials on
the heart (x(t)) with the same temporal mixing obtained
while fitting the ECG (Equation 5).

x(t) = Kxs(t) (5)

Since the ground truth of the data is the localization of
the first activation on the heart, we estimate the activation
times from the potentials. To do so, we calculate the mini-
mum dv/dt—maximum negative slope— weighted by the
norm of the gradient to favor activation times that capture
the wavefront behavior of the solutions. Afterwards, we
smooth the resulting activation times to reduce the error in
the estimation.

3. Experiments and Results

We applied both methods to recordings from the same
pacing experiment on human subjects. This datasets con-
sists of ECG measured with 120 leads from 3 volunteers
with healthy ventricles during a ventricular pacing proce-
dure with a catheter device. The experiments were car-
ried out with appropriate human subject permission from
Charles University Hospital in Prague, Czech Republic,
and in conjunction with standard atrial ablation proce-
dures. Details of the experiment can be found in [4] and
are summarized below.

During the intervention both ventricles were paced at
different locations while the position of the catheter was
recorded at the moment of pacing with the CARTO XP
electroanatomical mapping system. The heart geometries
—comprised the endocardium and the epicardium— were
extracted from axial CT scans covering a section of the
torso around the heart. A generic torso geometry was fitted
to this limited view of the CT scans of each subject. With
those geometries we generated the forward matrices using
the open-source BEM solver within SCIRUN [12]. Then
we used the forward matrix and the ECG recordings of
each subject to reconstruct the corresponding EGM on the
heart.

Finally, we estimated the activation times of each in-
verse solution and determined the site of earliest activation.
To evaluate the solutions we then compared the obtained
locations with the CARO coordinates projected onto the
nearest node of the heart. The results for both methods are
reported in Figure 1, Figure 2 and Figure 3 as the norm of
the localization error (in mm).
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Figure 1: Localization error results for Subject 1. Bars in
blue error for L1 norm, in green error for L2 norm and in
red their difference (L2-L1). The lines are the averages
across all pacing sites for L1 norm (blue), L2 norm (green)
and difference (red).

Figure 2: Localization error results for Subject 2. Bars in
blue error for L1 norm, in green error for L2 norm and in
red their difference (L2-L1). The lines are the averages
across all pacing sites for L1 norm (blue), L2 norm (green)
and difference (red).

Figure 3: Localization error results for Subject 3. Bars in
blue error for L1 norm, in green error for L2 norm and in
red their difference (L2-L1). The lines are the averages
across all pacing sites for L1 norm (blue), L2 norm (green)
and difference (red).

4. Discussion

At first glance, the results seem to have random variabil-
ity. However, there is some structure in them.

Within each subject, there is a wide spread of solutions:
in some pacing sites we do fairly well with error∼ 25 mm,
while for others we obtain errors higher than 50 mm. The
source of this variance across pacing sites is still unknown,
but previous work showed some correlation with the prox-
imity of the pacing site with respect to the septum [4].

Upon comparison of L1 and L2 regularization, the vari-
ability remains. For most pacing sites, the results in both
are comparable, but there are some cases for which the
difference between the two increases considerably. In the
majority of the cases this difference favors L2 solutions.
However, L2 norm does not dominate for all perspectives.
This trend is reversed for subject 2 as well as for pacing
sites on the RV for all subjects, for which L1 has on av-
erage more accuracy than its counterpart. Similar inter-
subject variations were observed in previous work using
this dataset [13,14]. Those studies combined with the find-
ings reported here suggest that there are geometry errors,
variable across subjects, that have a different effects in the
various modifications of the inverse solver.

Further research is necessary to be able to discern when
it is advisable to use either approach to constraint the solu-
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tions. One option is to explore the variability across multi-
ple recordings of pacings at the same location to determine
if their spread shows any indication of better performance
in L1 or L2. Another different approach is to investigate an
automatic method to infer an optimal regularization norm
from the data rather than fixing it a priori [15].

5. Conclusions

In this work we have studied the performance of L1 ver-
sus L2 norm regularization of the gradient in a joint spa-
tial and temporal regularization algorithm for ECGI. The
results are too variable to determine whether L1 or L2 is
best for this application. However, they show some bi-
asses across subjects and between ventricles that suggest
that there is some structural characteristics that favor one
type of regularization or the other and which could be ex-
ploited to improve accuracy in inverse solutions.
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