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Abstract

A method is presented which is capable of detailed char-
acterization of the transition probability structure of heart
period rhythm. The method is applied to two parts of the
Holter recordings, diurnal and nocturnal, of healthy in-
dividuals grouped according to their age and gender. It
reveals and quantifies patterns of short-term dynamics.
This geometrically oriented approach provides a plausible
method for distinguishing between healthy and pathologi-
cal variability.

1. Introduction

It is believed that changes in heart rhythm result from
the constant control maintained by the autonomic nervous
system [1]. However, different mechanisms are responsi-
ble for heart accelerations and decelerations. Adjustments
caused by the sympathetic part of the autonomic regulation
are slow — on a scale of seconds — whereas adjustments
by the vagal part of this regulation are an order of magni-
tude faster [2]. We, therefore, focus on the qualification
and quantification of heart accelerations and decelerations
in order to gain insight into the particular mechanisms driv-
ing short-term heartbeat dynamics across circadian activi-
ties: diurnal and nocturnal.

Network representations of time series [3, 4] are used
to explore dynamic relationships between values of RR-
intervals, i.e. time intervals between consecutive normal-
to-normal heart contractions.

2. Methods

2.1. Data acquisition

Twenty-four-hour Holter ECG recordings during a nor-
mal sleep-wake cycle were obtained from healthy volun-
teers without any known cardiac history. The signals were
grouped according to their age and gender: young — 15 fe-

males, 15 males (age: 19...25), and elderly — 11 females,
11 males (age: 70...89).

Holter recordings were first analyzed using Del Mar
Reynolds Impresario software and screened for premature,
supraventricular and ventricular beats, missed beats and
pauses. Then the signals were thoroughly corrected manu-
ally and annotated correspondingly.

The hours of sleep were identified for each signal indi-
vidually in order properly to detect the day-night transi-
tion. A six-hour period, covering the longest RR-intervals,
was extracted as the nocturnal period. The diurnal rhythm
was analyzed using a three-hour period from 16:00 to
19:00 hours. Perturbations in signals — artifacts or not
normal-to-normal RR-intervals — consisting of less than
five consecutive RR-intervals were replaced by the median
estimated from the previous seven normal RR-intervals.
Other perturbations were deleted. Ultimately, the noc-
turnal signals were constructed from at least 20 000 RR-
intervals, and the diurnal from at least 12 000 RR-intervals.

2.2. State space of of RR-increments

Let RR = {RR0, . . . , RRi, . . . , RRN} denote
a time sequence of RR-intervals with time index i.
The signal of RR-increments is defined as ∆RR =
{δRR1, . . . , δRRi, . . . , δRRN} with δRRi = RRi −
RRi−1. If δRRi < 0, we have an acceleration; if δRRi >
0, we have a deceleration; and if δRRi = 0, we call this a
no-change event.

The Holter equipment provided data with a 128 Hz
sampling frequency, which settled the resolution of RR-
intervals at 8 ms. Therefore all the values of RR-intervals
obtained, and in consequence of the RR-increments, are
multiples of 8 ms: 0,±8, ±16, . . .. These values, arranged
from the largest acceleration to the largest deceleration, are
referred to as labels for the states of the state space. Thus
if ∆K = maxi{|δRRi|}, the state space consists of 2K+1
states denoted as follows:

∆J ∈ {−∆K , . . . ,−8, 0, 8, . . . ,∆K}. (1)
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2.3. Transition network representation

The transition network of ∆RR is a graph of all
pairs (δRRi, δRRi+1) in the state space described by 1.
The vertices are labelled by values of 1 and each pair
(δRRi, δRRi+1) enters a directional edge connecting the
corresponding states. Since the same values occur many
times, all these edges are expressed by a single weighted
edge. Hence, for the construction of the graph, we count
events which are equal to a given pair (∆I ,∆J), with
I, J = 1, . . . 2K + 1 of all possible combinations of the
states described by (1).

The network graph can be represented a square matrix
A, called adjacency matrix, of size (2K + 1) with entries
AI,J = P (∆I ,∆J), describing probabilities that events
(∆I ,∆J) occur as a consecutive temporal sequence.

The deceleration capacity DC [5], obtained by the
phase-rectified signal averaging method (PRSA), follows
the events described by a deceleration at time i :

1

4
(RRi +RRi+1 −RRi−1 −RRi−2),

which can be rewritten as
1

4
(δRRi−1 + δRRi + δRRi + δRRi+1).

Hence, considering decelerations larger than ∆D, the av-
eraging process of the PRSA method can be approximated
as follows:

DCD =
1

4
[

∑
∆I≥∆D

∑
∆K

(∆K + ∆I)AKI

+
∑

∆I≥∆D

∑
∆J

(∆I + ∆J)AIJ ]. (2)

In particular, we assume ∆D = 40 ms, as this RR-
increment corresponds to 5% of the average RR-interval.

For each adjacency matrix A, a transition matrix T can
be introduced which describes the conditional probability
of observing ∆J if an increment ∆I has taken place:

TIJ =
AIJ∑
J AIJ

= P (∆J |∆I). (3)

Matrix T can also be interpreted as a directed and
weighted network with the same vertices as in the matrix
A, but now the edges reflect probabilities of transitions
from a given vertex.

Transition matrix T models a Markov process which un-
derlies changes in the system studied. Matrix T is right
stochastic, and consequently its stationary state can be in-
ferred. This stationary state µ is the eigenvector of T, cor-
responding to eigenvalue 1. Consequently, we can calcu-
late the so-called entropy rate as follows:

ST = −
K∑

I=−K

µI

K∑
J=−K

TIJ lnTIJ . (4)

2.4. Numeric and statistics methods

The estimates of A and T were obtained directly, by
our own programmes. The statistical tests were performed
using SigmaPlot 13.0 (Systat Software Inc.).

3. Results

The resulting graphs of networks are very large —
sparse at the boundary states of equation (1) and approach-
ing completeness around the vertex 0, namely for |∆J | <
100 ms. This structure makes the presentation of the whole
network difficult. Therefore, the networks are shown as
contour plots of matrices limited to the transitions between
RR-increments for |∆J | < 100 ms.

Figure 1. Adjacency matrices for diurnal activity: young
(top) versus elderly (bottom), and males (left) versus fe-
males (right). The horizontal axes enumerate ∆I ; the ver-
tical axes enumerate ∆J of AIJ = P (∆I ,∆J).

In the series of Figures 1, 2, 4 and 5, we show the mean
adjacency matrices A and the mean transition matrices T,
estimated by pooling the matrices obtained from individual
signals into the respective age-gender groups.

The diurnal events are well represented by |∆J | < 100
intervals. The plots describe more than 91.4% of events for
young males in a day, and up to 99.6% of events for elderly
males in a day. But in the case of the nocturnal signal for
the groups of young subjects, these parts of networks cor-
respond to only 77.3% of transitions for males, and 85.2%
of transitions for females. Therefore, the nocturnal net-
works for the groups of young subjects are presented in a
different scale.
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Figure 2. Adjacency matrices for nocturnal activity:
young (top) versus elderly (bottom), and males (left) ver-
sus females (right). The horizontal axes enumerate ∆I ; the
vertical axes enumerate ∆J of AIJ = P (∆I ,∆J).

Figure 3. Mean deceleration capacity and its standard er-
ror obtained from matrices A, pooled into the groups con-
sidered.

From Figures 1 and 2, we see that all probability distri-
butions sharply peak around the most probable transition
(0, 0). The (0, 0) transition represents the three identical
RR-intervals occurring consecutively. However the proba-
bility of the (0, 0) transition is significantly different in age
and circadian groups. It appears that:
Pday
young,m(0,0)=2.8 ±0.6%, Pday

young,f (0,0)=3.2±0.7%,
Pnight
young,m(0,0)=0.7±0.1%, Pnight

young,f (0,0)=1.00±0.3%,
Pday
elderly,m(0,0)=7.8±1.3%, Pday

elderly,f (0,0)=7.0±1.1%,
Pnight
elderly,m(0,0)=4.1± 0.6%, Pnight

elderly,f (0,0)=4.3±0.9%.
Furtermore, the way in which the distributions decay while

Figure 4. Transition matrices for diurnal activity: young
(top) versus elderly (bottom), and males (left) versus fe-
males (right). The horizontal axes enumerate ∆I ; the ver-
tical axes enumerate ∆J of TIJ = P (∆J |∆I).

departing from the (0, 0) point strongly depends on the age
and circadian rhythm. The influence of the gender is less
evident.

The deceleration capacity DC40, shown in Figure 3,
represents group properties related to large decelerations.
We see systematic differences in the values of DC40 be-
tween nocturnal and diurnal rhythms. In the case of signals
from the group of young subjects, this difference is statisti-
cally significant (t-test, male: P=0.035; female: P= 0.013).
The gender differences are not significant.

From the transition matrices, plotted in Figures 4 and
5, in the case of diurnal dynamics in young subjects, we
see that transition probabilities are only slightly dependent
on the preceding event. However, in the case of the sig-
nals from elderly subjects, these transitions show antiper-
sitency: after a deceleration, an acceleration is more prob-
able, and vice verse.

Moreover, the nocturnal matrices are similar to the diur-
nal ones for the elderly, which might suggest that the sleep
stages have less effect on their heart rhythm than in the
young group. This may be related to the different sleep
structure in the elderly — more light sleep and a relative
decrease in or absence of deep sleep [6].

In the case of the elderly, the transition matrix shows a
considerably more complex structure than for the young.
In particular for the diurnal records, we can identify mul-
tiple ’islands’ of transitions. In some cases these ’is-
lands’ are disjointed from the central core ’island’ centred
at (0,0). We hypothesize that these structures represent
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Figure 5. Transition matrices for nocturnal activity: young
(top) versus elderly (bottom), and males (left) versus fe-
males (right). The horizontal axes enumerate ∆I ; the ver-
tical axes enumerate ∆J of TIJ = P (∆J |∆I).

pathological variability and are caused by possible occur-
rences of arrhythmias of various origins. The precise na-
ture of this phenomenon requires further investigation.

The mean transition entropy resulting from the transi-
tion matrices presented in Figure 6 shows a systematic de-
crease. Moreover, for all groups the nocturnal transition
entropy is higher than the diurnal in a one-sided t-test:
Pmale
young =0.001, Pfemale

elderly =0.007, Pmale
elderly =0.026, Pfemale

elderly

=0.032. Gender differences are not significant.

Figure 6. Mean transition entropy and its standard error
obtained from matrices T, pooled into the groups consid-
ered.

4. Conclusions

Large decelerations are considered to reflect the influ-
ence of high activity of the parasympathetic nervous sys-
tem [2]. Therefore, we may see our results as showing that
aging strongly diminishes vagal influence. Nevertheless,
the higher vagal activity is related to the sleep time.

The methodological approach presented is capable of
detailed characterization of the transition probability struc-
ture, as we demonstrate in an age and gender specific
manner. In particular, we propose using our geometri-
cally oriented approach for distinguishing between healthy
and pathological variability. This may potentially aid the
identification of arrhythmias of various origins, in addition
to detailed characterization of the intrinsic complexity of
heart rate.
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