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Abstract

In this work, we propose a stacked switching vector-
autoregressive (SVAR)-CNN architecture to model the
changing dynamics in physiological time series for patient
prognosis. The SVAR-layer extracts dynamical features
(or modes) from the time-series, which are then fed into
the CNN-layer to extract higher-level features representa-
tive of transition patterns among the dynamical modes. We
evaluate our approach using 8-hours of minute-by-minute
mean arterial blood pressure (BP) from over 450 patients
in the MIMIC-II database. We modeled the time-series us-
ing a third-order SVAR process with 20 modes, resulting
in first-level dynamical features of size 20x480 per patient.
A fully connected CNN is then used to learn hierarchical
features from these inputs, and to predict hospital mortal-
ity. The combined CNN/SVAR approach using BP time-
series achieved a median and interquartile-range AUC of
0.74 [0.69, 0.75], significantly outperforming CNN-alone
(0.54 [0.46, 0.59]), and SVAR-alone with logistic regres-
sion (0.69 [0.65, 0.72]). Our results indicate that includ-
ing an SVAR layer improves the ability of CNNs to classify
nonlinear and nonstationary time-series.

1. INTRODUCTION

Subtle dynamical patterns in physiological time-series,
often difficult to observe with the bare eye, may contain
important information about the pathophysiological state
of patients and their long-term outcomes. We present an
approach to physiological time-series analysis that simul-
taneously models the underlying dynamical systems using
a switching vector autoregressive (SVAR) model, and the
high-level transition patterns among the dynamical modes
using Convolutional Neural Networks (CNNs). CNNs
have been shown recently to produce state-of-the-art per-
formance in image classification tasks [1]. This success
is largely attributed to their ability to exploit hierarchical

structures for feature learning. However, direct applica-
tion of CNNs to physiological time-series have been lim-
ited due to the presence of underlying physiological con-
trol systems, capable of exhibiting rich dynamical patterns
at multiple time-scales.

In previous work, we adopted a SVAR process frame-
work to discover the shared dynamic behaviors exhibited
in HR/BP time series of a patient cohort [2]. We used
the proportion of time a patient spents in each of the dy-
namic modes (“mode proportions” from now on) to con-
struct a feature vector for predicting a patient’s underly-
ing “state of health”. However, this feature does not cap-
ture the high-level transition dynamic among the dynami-
cal mode. To address this limitation, we propose a stacked
SVAR-CNN architecture. The SVAR-layer extracts dy-
namical features (or modes) from the time-series, which
are then fed into the CNN-layer to extract higher-level fea-
tures representative of transition patterns among the dy-
namical modes. We evaluated our approach using minute-
by-minute mean arterial blood pressure (BP) of 453 ICU
patients during their first 24 hours in the ICU from the
Multi-parameter Intelligent Monitoring in Intensive Care
(MIMIC) II database [3].

2. Materials and Methods

This section describes the utilized dataset, as well as the
SVAR and CNN architectures used to learn high-level fea-
tures in the multivariate time-series of vital signs.

2.1. Dataset

Minute-by-minute mean arterial blood pressure (MAP)
measurements of MIMIC II [3] adult ICU patients during
the first 24 hours of their ICU stays were extracted. The
analysis in this paper was restricted to 453 patients with
day 1 SAPS-I scores [4] and with at least 8 hours of blood
pressure data during the first 24 hours after ICU admission.
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Hospital mortality of this cohort is 14%. The data set con-
tains over 9,000 hours of minute-by-minute heart rate and
invasive mean arterial blood pressure measurements (over
20 hours per patient on average) from 453 adult patients
collected during the first 24 hours in the ICU. Time series
were detrended, and Gaussian noise was used to fill in the
missing or invalid values. The median age of this cohort
was 69 with an inter-quartile range of (57, 79). 59% of the
patients were male. Approximately 15% (67 out of 453) of
patients in this cohort died in the hospital.

2.2. Switching Vector Autoregressive Mod-
eling of Cohort Time Series

Our approach to discovery of shared dynamics among
patients was based on the SVAR model [2, 5], which as-
sumes there exists a library of possible dynamic behav-
iors or modes; a set of multivariate autoregressive model
parameters {A(k)

p , p = 1 · · ·P}Kk=1, {Q(k)}Kk=1, where
K is the number of dynamic modes. For each mode k,
A

(k)
p , p = 1 · · ·P are the AR coefficient matrices (corre-

sponding to each of the P lags) and Q(k) is the correspond-
ing noise covariance matrix. Let yt be the observation at
time t, and zt be an indicator variable indicating the ac-
tive dynamic mode at time t. Following these definitions,
a SVAR model is defined by:

yt =

P∑
p=1

A(zt)
p yt−p +Q(zt). (1)

A collection of related time series can be modeled as
switching between these dynamic behaviors which de-
scribe a locally coherent linear model that persist over a
segment of time. We modeled minute-by-minute MAP
time series as a switching AR(3) process with 20 dynamic
modes as in [2]. Patients were divided into 10 training/test
sets. Ten switching VAR models were learned, one for
each training set. The mode assignment of time series for
patients in the test set was inferred based on the model
learned from the corresponding training set.

2.3. Convolutional Neural Networks

Convolutional neural networks are a particular formu-
lation of deep neural networks that were first developed
for the automatic classification of handwritten digits in im-
ages [6]. Deep neural networks [7] are a class of mod-
els which consist of a hierarchy of latent representations
distributed across numerous simple units or neurons. Al-
though each level in the hierarchy is a simple transforma-
tion from the previous layer, having many units spanning
multiple layers results in a very rich latent representation
that has proven to facilitate complex tasks. Convolutional
networks leverage the spatio-temporal structure of the data

they model by applying a spatial or temporal convolution
of the model parameters over the input to compute the fol-
lowing layer. Recently, such networks have achieved state
of the art results on image classification [1, 8] and text un-
derstanding [9, 10] tasks.

The latent or hidden representation H = {h1, ..., ht}
resulting from a convolutional layer in such a network is
computed by convolving a parameterized weight matrix
W over the input Z = {z1, ..., zt} followed by an ele-
mentwise non-linearity g(·), i.e. H = g(W ∗ Z). This is
typically repeated for multiple layers and that are followed
by a final classification layer.

2.4. Combining SVAR and Convolutional
Neural Network

We modeled the time-series using a third-order SVAR
process with 20 modes as described above. We then used
the SVAR state marginals from the final 8 hours of the
minute-by-minute BP from each patient (during their first
days in the ICU) as input to the CNN, resulting in first-
level dynamical features of size 20x480 per patient. As a
pre-processing step, we ordered rows of the state marginal
matrix based on the modes’ odds ratios for hospital mor-
tality (from logistic regression using the training set) so
that modes with similar mortality risk share location prox-
imity in the CNN input image space. A one-layer fully
connected CNN is then used to learn hierarchical features
from these inputs, and to predict hospital mortality.

As a comparison, we also use the SVAR model to learn
a time-series specific transition matrix among the dynamic
modes, and use the learned patient-specific transition ma-
trix (20x20) as an input to CNN. This feature does not
capture the specific time of a transition, but includes in-
formation regarding the frequency of transitions from one
dynamical model to another, and will allow us to assess
the relative importance of transient versus global transition
features of the dynamics.

The CNN kernel size is 20x20 with 12 hidden units. In
each of the 10-fold, the training set was further divided into
70%/30% training and validation set: the 70% training set
was used to build 30 different CNN models using 30 differ-
ent random initializations; for each initialization, we use a
5-fold validation procedure (i.e. validate the performance
of the learned CNN model using 5 different subsets of the
validation set) to select the best CNN model for actual in-
ference on the test set; the CNN model with the highest
mean AUC from the 5-fold validation was used to do pre-
diction on the actual test set.
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(a)Non-survivor Example
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(b)Survivor Example
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(c)Non-survivors Population Median
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(d)Survivors Population Median

Figure 1. Dynamic modes state marginal probabilities over 8 hours (20x480): a comparison of the non-survivors vs. the
survivors. Each patient was represented by a 20x480 state marginals. The x-axis represents the time (in minutes), and the
y-axis is the probability of belonging to different dynamic modes (20 in total). The rows were ordered based on the modes’
odds ratios in ascending order, as in Table 2 (see Appendix). Low risk modes (odds ratios < 1) are on the top (rows 1 - 4),
and higher risk modes (odds ratios > 1) are on the bottom (after row 5).

3. RESULTS

3.1. State Marginals from SVAR

Figure 1 shows example dynamic modes state marginal
probabilities over 8 hours (20x480) for survivors vs. non-
survivors. (Top 4 rows are low-risk modes; the remaining
modes are high-risk modes.) We used univariate logistic
regression analysis to test the association between the pro-
portion of time patients spent in each dynamic mode (20
in total) and the outcome (hospital mortality). The odds
ratios from the association analysis were then used to sort
the dynamic modes.

Table 2 in the Appendix shows the 20 discovered SVAR
dynamic modes (from one fold), listed in the order of their
associations with hospital mortality. The same ordering
is used to construct a CNN input-image from SVAR state
marginals: rows of the state marginals appear in the same
order as the corresponding dynamic modes appear in Table
2. For each mode, we report its p value, and odds ratios
(OR, with 95% confidence interval) in mortality risks as
per 10% increase in mode proportions. Modes are listed
in ascending order based on their odds ratios. Note that
the low-risk modes are on the top four rows; the remaining
modes are higher-risk modes with odds ratios greater than
one. Table shows the order of the dynamic modes in the
state marginal probabilities (20x480) input matrix to CNN.

3.2. Prediction Performance

Table 1 summarized the AUCs from 10-fold cross val-
idation. Applying CNN-alone on the raw BP time series
achieved an AUC of 0.54 [0.46, 0.59]. Applying logistic
regression on SVAR mode proportion alone achieved an
AUC of 0.69 [0.65, 0.72]. As a baseline comparison, an ex-
isting acuity metric SAPS-I, using 14 different physiolog-
ical/lab measurements gave an AUC of 0.65 [0.59, 0.71].

The best performance was achieved by combining
CNN/SVAR using SVAR generated state marginals from
BP time-series as an input to CNN, achieving a median and
interquartile-range AUC of 0.74 [0.69, 0.75]. Using SVAR
learned patient-specific transition matrix among dynamic
modes as an input to CNN achieved a median AUC of 0.67
[0.63, 0.69].

AUC (IQR)
SAPS I 0.65 (0.59, 0.71)

BP Raw Samples + CNN 0.54 (0.46, 0.59)
SVAR Trans. Matrix + CNN 0.67 (0.63, 0.69)

SVAR BP Dynamics MP + LR 0.69 (0.65, 0.72)
SVAR BP Dynamics + CNN 0.74 (0.69, 0.75)

Table 1. Performance of Mortality Predictors. LR - logis-
tic regression. MP - mode proportion.
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4. DISCUSSION and CONCLUSIONS

We have presented a framework that combines switch-
ing state space models with convolutional neural networks
for time series classification. Our approach uses the in-
ferred state marginals of hidden variables from SVAR as
inputs to convolutional neural network for a supervised
learning task. Our approach simultaneously models the
underlying dynamics of physiological time series using a
switching state-space model, and the high-level transition
patterns among the states using convolutional neural net-
works. We have compared several different approaches of
modeling physiological time series for outcome prediction
using CNN, SVAR, and a stacked SVAR/CNN approach.
The stacked CNN/SVAR architecture using state marginals
achieves the best performance, outperforming both stand-
alone SVAR and CNN in prediction performance. Our re-
sults indicate that including an SVAR layer significantly
improves the ability of CNNs to classify nonlinear and
nonstationary time-series. The proposed approach is par-
ticularly useful when dealing with small datasets, since
the expectation-maximization algorithm used to learn the
SVAR features [5] is less likely to overfit to the data, com-
pared to a supervised backpropagation based algorithm di-
rectly applied to the CNN on the raw time-series. Finally, a
switching state space model allows for incorporating mod-
els of the underlying physiological processes that gener-
ate the observed time series, and provides a level of in-
terpretability not achievable by the standard deep learning
algorithms.
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Appendix: Discovered SVAR Dynamic Modes

Mode p-val OR (95% CI)
1 11 0.0001 0.61 (0.47 0.78)
2 17 0.5665 0.70 (0.21 2.35)
3 15 0.0244 0.71 (0.53 0.96)
4 2 0.7395 0.90 (0.48 1.67)
5 20 0.8908 1.02 (0.78 1.34)
6 8 0.7981 1.22 (0.27 5.58)
7 13 0.0000 1.44 (1.22 1.71)
8 9 0.3519 1.58 (0.60 4.16)
9 18 0.1881 2.28 (0.67 7.76)

10 7 0.3372 2.80 (0.34 22.95)
11 10 0.1997 4.08 (0.48 35.04)
12 4 0.0677 9.18 (0.85 98.97)
13 16 0.0633 9.56 (0.88 103.45)
14 19 0.0577 11.34 (0.92 139.10)
15 6 0.0339 14.36 (1.23 168.33)
16 12 0.0311 16.38 (1.29 208.20)
17 3 0.0282 16.88 (1.35 210.84)
18 14 0.0205 18.62 (1.57 220.83)
19 5 0.0226 19.81 (1.52 258.17)
20 1 0.0120 23.41 (2.00 274.21)

Table 2. Discovered dynamic modes and their association
with hospital mortality.
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