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Abstract 

Many approaches have been proposed for automatic 

classification of different pathological events in ECG 

signals. Present study is focused on analysis and 

classification of non-ischemic, moderate and severe 

ischemic, and VPB segments in data obtained in rabbit 

isolated hearts. It is shown, that use of low number of 

morphological parameters calculated from electrograms 

combined with even simple classification method allows 

achieving of accurate results (with overall accuracy up to 

0.99) for four types of the segments. 

1. Introduction

There are many approaches for automatic classification 

of different pathological events, including ventricular 

premature beats (VPBs) and other arrhythmias in human 

ECG. Other interesting issue is the detection of ischemic 

changes in ECG. Most classification approaches are 

based on use of rhythm- and morphology-related ECG 

parameters, such as duration and amplitude of different 

parts of ECG [1]-[4]. In recent studies, time-frequency 

methods, such as wavelet analysis and higher-order 

statistical approaches, are also proposed for 

representation of different changes in ECG [1],[3]-[7]. 

Besides the calculation of such ECG parameters, the 

appropriate classification method should be chosen to 

achieve accurate results. Artificial neural network, 

support vector machines and discriminant function (linear 

or quadratic) are the most popular in this area [1],[3]-[7]. 

In experimental data, VPBs may appear as a result of 

some changes of experimental conditions, such as 

pharmacological intervention or ischemia induction. In 

case of ischemia, VPBs detection may be complicated 

due to the similarity between morphology of VPBs and 

ischemic beats. In this work, classification of four types 

of heart beats is presented. 

2. Methods

2.1. Experimental data 

Data were recorded during experiments performed in 

accordance with the guidelines for animal treatment 

approved by local authorities and conformed to the EU 

law. Isolated hearts of ten New Zealand rabbits perfused 

according to Langendorff were used in this study. Three 

orthogonal electrograms (EGs) (see Fig.1) were recorded 

during the whole experiment (20 min stabilization and 

three repetitions of 10 min ischemia and reperfusion) with 

sampling frequency of 2kHz [8]. 

Figure 1. Orthogonal leads used for electrograms 

recording: front (left) and top (right) view. LV - left 

ventricle. 

2.2. Electrograms processing and analysis 

The parts of EGs with any artifacts were excluded 

from the study. Lynn's filter with cut-off frequency of 

0.5Hz was used to eliminate the low-frequency baseline 

wandering. After that, in EGs recorded during 

stabilization and ischemic periods, QRS complexes were 

detected automatically and selected QRS-T segments 

were then manually delineated, i.e. the beginning and the 

end of QRS and the end of T wave were localized 

regarding three-lead EGs. 

For further analysis, VPBs were found with human 

expert among selected QRS-T segments. Non-ischemic 
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(NOR), VPB, moderate (ISM), and severe (ISE) ischemic 

segments (see Fig.2) were then chosen (172 segments for 

VPB and 220 segments for other types, respectively) from 

data set for feature extraction. VPBs were found in 

ischemic periods only. Last two types were selected from 

data recorded in about the 5
th

 and the 10
th

 minute of 

ischemia, which can be characterized with slight and 

significant changes in EG morphology, respectively. As 

can be seen, ISE and VPB segments are of quite a similar 

morphology.  

Figure 2. Types of classified QRS-T segments. NOR, 

ISM, ISE, VPB – non-ischemic, moderate and severe 

ischemic beats, and ventricular premature beats, 

respectively. 

2.3. Features extraction 

Classification features representing the morphology 

were calculated from EGs recorded with two horizontal 

leads. EG from vertical lead was excluded from the study 

because of poor changes in its morphology caused by 

ischemia. Total number of 71 morphological features was 

calculated from QRS-T segments. Seven features 

(duration of QRS, QT, ST-T, angle and length of 

maximum vector calculated from 2D QRS and ST-T 

loops separately) were calculated using EGs from both 

leads together. Remaining 32 features were derived from 

each lead separately. They include durations, amplitudes 

and areas under various parts (AUC) of QRS-T segment, 

such as QRS complex, ST-T segment and T wave. 

Additionally, relative values of AUC based features were 

calculated to study the changes in morphology of 

corresponding part of the segment regarding its total 

change. 

In Fig.3, boxplots are shown for two different 

morphological parameters derived from four types of 

QRS-T. 

2.4. Feature number reduction 

Only the most informative features were then chosen 

from the whole data set using Kruskal-Wallis test 

accompanied with multicomparison Tukey-Kramer test 

(α=0.05). As a result, 10, 12 and 4 features with 

significantly different values among all types of data were 

selected for lead I, lead II and joint features, respectively. 

Examples of values distribution of two features selected 

with statistical test are shown in Fig.3. 

Figure 3. Boxplots for values of features calculated from 

different types of QRS-T segments with significant 

difference among all types (p<0.05) confirmed with 

statistical analysis: a) QRS complex duration (QRSd) 

joint for lead I and lead II, b) area under QRS (AUCqrs) 

for lead II. 

Besides statistical test, principal component (PC) 

analysis was also applied on the whole data set (71 

features) to reduce the number of features. In this case, 

only ten first PCs explaining approx. 93% of total 

variance of data (see Fig.4) were selected for further 

classification. 

Figure 4. Dependence of explained variance on number of 

used principal components. 

Thus, five different groups of features were proposed 

for classification of four types of QRS-T segments: 

 4 features selected from data joint for both leads, 

 10 features selected from data recorded with lead I, 

 12 features selected from data recorded with lead II, 

 all selected features together (n=26), 

 10 features obtained with PC analysis. 
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2.5. Automatic classification 

Four classification models were trained and used for 

automatic classification of QRS-T segments based on 

selected features mentioned above: 

 discriminant function analysis (DFA) with linear 

and quadratic function, 

 naive Bayes (NB) classifier with Gaussian density 

function and kernel density function estimation, 

 support vector machine (SVM) (one-vs-all approach 

for multiclass classification) of general type and 

with radial basis function (RBF), 

 k nearest neighbours (k-NN) with different k value 

(k=1, 5, 10, 15, and 20). 

Training and testing of classifiers were performed 

using 10-fold cross validation approach. Besides initial 

feature values, their normalized modification was also 

used as input for training and testing of different 

classification models. Statistical characteristics, such as 

mean and standard deviation values, were calculated from 

training data and then used for normalization of training 

and corresponding testing feature values within each fold 

separately. 

Mean overall accuracy (ACC) was calculated among 

ten folds of testing of each classifier approach. ACC was 

defined as a number of correctly classified segments of all 

groups related to their total number. Mean ACCs 

separately for each type of the segments were also 

calculated for more detailed interpretation of the results. 

3. Classification results

Mean overall ACC values for different classification 

approaches are summarized in Table 1. It is evident, that 

the lowest ACC was obtained in case of DFA 

classification. The best results were generally obtained 

with k-NN (within wide range of k-values) and NB with 

kernel density estimation (ACC in range of 0.83-0.99 and 

0.83-0.92, respectively). ACC of Gaussian NB is of about 

0.08-0.15 lower than that of kernel NB. SVM is probably 

the most sensitive to data normalization with similar 

results for both common and RBF model. 

Results obtained using feature sets from lead I and lead II 

are very similar with slightly better results for lead I data 

in case of SVM classification. Use of features joint for 

both leads allows obtaining of similar results regardless 

of lower number of features in this case. For all 

classifiers, use of all selected features together improves 

the accuracy; especially it is true in case of NB and SVM 

(increasing of ACC is at least 0.05 and 0.09, 

respectively). It can be also seen from Table 1, that using 

of PCA-reduced feature set allows reaching of similar 

results regardless the classification model. In this case, 

reached ACC values are in general higher than that 

obtained using other feature sets. 

Mean ACCs for classification with linear discriminant 

function and selected features calculated from lead II data 

are: 0.93, 0.77, 0.52, and 0.62 for NOR, ISM, ISE, and 

VPB group, respectively. 

Table 1. Mean overall accuracies (among 10 folds of validation) of different classification approaches. 

Classifier 

Group of used features 

Joint for leads lead I lead II All together PCA 

Init. Norm. Init. Norm. Init. Norm. Init. Norm. Norm. 

DFA 

Linear 0.72 0.72 0.77 0.77 0.72 0.72 0.83 0.83 0.84 

Quadratic 0.73 0.73 0.70 0.70 0.71 0.71 0.79 0.79 0.87 

NB 

Gaussian 0.75 0.75 0.71 0.71 0.71 0.71 0.79 0.79 0.87 

Kernel 0.83 0.83 0.84 0.84 0.86 0.86 0.95 0.95 0.92 

SVM 

Common 0.76 0.75 0.58 0.81 0.54 0.76 0.78 0.91 0.89 

RBF 0.98 0.76 0.32 0.80 0.27 0.76 0.26 0.87 0.92 

k-NN 

k=1 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

k=5 0.98 0.98 0.95 0.97 0.98 0.98 0.99 0.99 0.99 

k=10 0.90 0.92 0.89 0.92 0.91 0.95 0.93 0.96 0.97 

k=15 0.87 0.88 0.85 0.89 0.89 0.90 0.91 0.94 0.94 

k=20 0.86 0.87 0.83 0.87 0.87 0.89 0.89 0.93 0.92 

1139



Corresponding confusion matrix of the results (example 

within one fold of testing) is shown in Table 2. It is 

evident, that the classification of ISE and VPB segments 

is the most difficult. ISE segments were misclassified as 

ISM and VPB (5 and 6 segments from 22, respectively). 

On the other hand, 10 VPB segments (from 17) were 

misclassified as ISE. 

In case of classification with RBF SVM method using 

PCA-reduced features, the mean classification ACCs for 

four types of QRS-T segments are: 0.93, 0.84, 0.96, and 

0.94, respectively. Example of corresponding confusion 

matrix is shown in Table 2. Only 3 VPB segments were 

inaccurately recognized as ISE. Performed classification 

is more accurate comparing with the previous approach. 

Table 2. Example of confusion matrix for linear 

discriminant function classification using lead II features 

and RBF SVM classification using PCA-reduced features. 

Classifier output 

NOR ISM ISE VPB 
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ISM 1 18 3 0 

ISE 0 0 22 0 

VPB 0 0 3 14 

4. Discussion and conclusions

According to the results, use of low number of 

morphological parameters calculated from one- or two-

lead electrogram in combination with simple 

classification methods (such as k-NN or DFA) allows 

achieving of accurate results for four types of QRS-T 

segments. One of the best achieved classification result 

(ACC=1.00, 0.93, 0.97, and 0.96 for NOR, ISM, ISE, and 

VPB segments, respectively, in case of 10-NN 

classification using PCA-reduced features) is similar or 

even better comparing with that obtained with other 

methods. For example, overall ACC of binary 

classification (NOR/VPB) obtained with SVM and 

Gaussian RBF classifier using morphological, wavelet 

and higher order statistical features are approx. 0.90 and 

0.92, respectively [1]. ACC for VPB is about 0.96 and 

NOR about 0.93 in case of classification with multilayer 

perceptron (MLP) using morphological and rhythm-based 

features [3] and overall ACC of binary classification 

(ischemic/normal) with MLP using higher order statistical 

and spectral features is 0.96 [5]. 

As expected, reduced ACC was mainly related to 

misclassifications between ISE and VPB groups with 

similar character of electrogram morphology. Selection of 

more informative features using statistical test or PCA 

and use of features derived from one-lead data only 

reduce time and PC memory requirements that can be 

quite high in case of multiclass classification. 
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