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Abstract

Photoplethysmography (PPG) is an unobtrusive mea-
surement modality recently explored for the detection of
atrial fibrillation (AF). When used in wrist-worn applica-
tions, PPG-monitoring can be used for long-term monitor-
ing in daily life, which is beneficial when aiming to detect
AF. The objective of this study was to investigate whether
the performance of an AF detection model trained and
tested on short measurements is generalizable to measure-
ments in daily life. PPG, accelerometer, as well as refer-
ence ECG data were measured from 32 subjects (13 con-
tinuous AF, 19 no AF) in 24-hour monitoring in daily life.
An AF detection model combining inter-pulse interval fea-
tures was trained to classify AF or non-AF. Short measure-
ments were obtained by selecting a 5-minute segment from
each 24-hour recording and used for training the model.
The accuracy was tested on both 5-minute segments and
24-hour data. Sensitivity, specificity, and accuracy of the
model were 98.90%, 99.03%, and 98.98% with 5-minute
data and 96.94%, 91.99%, and 93.91% with 24-hour data.
False positive detections per patient worsened from being
on average none during short recordings to (mean + sd)
467 £ 328 in daily life. Thus, testing the AF detection
models intended for long-term PPG-monitoring is essen-
tial with data from daily life in order to obtain a realistic
estimate of the accuracy.

1. Introduction

Atrial fibrillation (AF) is a cardiac arrhythmia that af-
fects approximately 3% of the adult population [1]. Early
diagnosis of AF is essential because the arrhythmia in-
creases the risk of stroke and heart failure. From a popu-
lation health perspective, effective screening solutions are
needed, but the challenges are in detecting asymptomatic
and intermittent episodes of AF.

Studies with implantable devices have shown that in-
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creasing the monitoring period increases the percentage of
subjects detected with AF in high risk populations [2, 3].
Currently, implantables are the only solution for monitor-
ing on a long-term basis. These technologies are costly and
require the implantation of the device. Therefore, the im-
plantables cannot provide a solution for screening larger
populations and other solutions that are unobtrusive and
have a lower cost are needed.

Photoplethysmography (PPG) is an optical measure-
ment modality that is used in wrist-worn wearables for
heart rate monitoring. These devices can be worn for
extended periods of time and could provide an unobtru-
sive long-term monitoring solution that would benefit AF
screening. Detecting AF with wrist-worn PPG-based de-
vices has been investigated in several studies with good
detection performance [4—11].

In many studies about AF detection with wrist-worn de-
vices, the devices are worn by study subjects for only a
short period of time and the measurement setting is often
in a controlled hospital environment [4—7]. Therefore, the
studies give very little insight in the accuracy of AF detec-
tion during daily life. There are only few studies that show
detection performances in 24-hour measurements [8—10]
or longer [11]. In addition, a reduction in classification
accuracy has been shown in daily life when features had
been trained with data from patients having an electrical
cardioversion [12] or when a model was tested in both set-
tings [13]. In this work, our aim is to study how well a
detection model trained with short measurements performs
in daily life.

2. Methods
2.1. Data
The dataset used in the analysis consisted of 40 pa-

tients and was collected from patients that were sched-
uled for 24-hour Holter monitoring. Next to the 12-lead
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Figure 1. Flow chart of the inter-pulse interval (IPI) processing.

Holter monitor (H12+, Mortara, Milwaukee, WI, USA),
the patients wore on their non-dominant arm a data logger,
recording PPG in reflective mode and 3-axis accelerometer
data with a Philips Cardio and Motion Monitoring Mod-
ule (CM3 Generation-3, Wearable Sensing Technologies,
Philips, Eindhoven). The sampling frequency of both PPG
and accelerometry was 128 Hz and the dynamic range of
the accelerometer was + 8 g.

The ECG data was used as a reference and it was labeled
beat-by-beat by an analyst using an automated rhythm de-
tection software (Veritas, Mortara, Milwaukee, WI, USA).
The labels were adjusted by the analyst when the au-
tomated labeling was not correct. The labels included
normal, AF, premature atrial and ventricular contractions,
paced, artifact, and unknown. During the 24-hour mea-
surement period, patients were filling in a diary about their
symptoms and activities and that was handed in when the
monitoring period ended.

For the analysis, patients with atrial flutter, very noisy
ECG reference, or very strong respiratory effect on heart
rate variability during the night, were excluded. From the
remaining 32 patients, 13 had continuous AF (age (years,
m = sd): 70 & 9, males: 69%, BMI (kg/m?, m =+ sd): 28.3
+ 4.6) and 19 patients had no AF, but sinus rhythm and
premature contractions (age, (years, m + sd): 67 £ 13,
males: 53%, BMI (kg/m?, m = sd): 27.9 &+ 5.5).

2.2. Inter-pulse intervals

Inter-pulse intervals (IPIs) were extracted from the PPG
signal for rhythm irregularity assessment to be used in the
classification of AF and non-AF. The IPIs were calculated
as the time difference between two consecutive pulses. For
identifying individual pulses, the raw PPG data were first
preprocessed by downsampling to 64 Hz and were then
bandpass filtered to range from 0.3 to 5 Hz. Then the
pulses were detected by identifying the fiducial points as
described in [9]. The IPI time series were used to match
the pulses to the labeled ECG beat times in order to have a
label for each pulse [9]. The flow chart in Fig. 1 illustrates

how the IPI series are processed after their extraction.

2.3.  Short measurements

The objective of this study was to investigate how well a
model trained with short measurements in a stable setting
would perform when tested with data from an ambulatory
setting. For selecting the short segments in a stable set-
ting, the periods when the subject was resting and sleep-
ing were identified. This was done manually by using the
self-reported sleep and wake times and looking at the ac-
celerometer data.

After the period during sleep was identified, a 5-minute
segment was selected randomly from each subject. IPIs
shorter than 200 ms and longer than 2200 ms were re-
moved as outliers. After outlier removal, the sum of the
remaining IPIs needed to be at least 90% of the length of
the segment in order to consider the pulses being detected
reliably and the setting being stable. If the segment did not
meet the constraint, a new segment was selected.

2.4. Feature computation

Three features were used for the IPI-irregularity as-
sessment in order to classify AF: the percentage of inter-
val differences of successive intervals greater than 70 ms
(pNN70), Shannon Entropy (ShE), and Sample Entropy
(SampEn). They have been previously used for AF de-
tection from PPG [4,9, 12].

ShE and SampEn quantify in different ways the likeli-
hood that a similar or regular pattern would not repeat in
the sequence. For calculating ShE, first the IPI-values in
the time series are divided into bins. The probability of the
values in each bin is calculated as

p(i) = —=, (D

n(7) being the number of values in the bin ¢, [ length of the
sequence. ShE can be calculated from the probabilities as
follows
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N

ShE = — Z p(i)m, 2)

where N is the number of bins. The number of bins used
was 16 as in [9].

SampEn is the negative natural logarithm of the condi-
tional probability that two sequences that match with each
other at m points, the sequences also match when m + 1
points are compared. The match is defined as a differ-
ence between two sequences being smaller than tolerance
r. SampEn was calculated following [14] as

SampEn = —In(A/B) = —In(A) + In(B).  (3)

A is the number of matches with template length m + 1
and B is the number of matches with length m, that was
set to 1, and  was 0.25 times the standard deviation of the
sequence as in [4].

The data was segmented into 30-second time windows
of IPI-sequences with 20-second overlap and the three fea-
tures were calculated for every time window.

The features were computed by using two different con-
straints and performances with the constraints were com-
pared. In the first case, every window needed to include
at least 20 IPIs, meaning that the heart rate could not be
lower than 42 bpm. In the second case, no constraint was
set for the window itself. However, SampEn would be only
calculated if there were nine consecutive IPIs in the win-
dow [15] and therefore feature vectors without a value for
SampEn were removed from the analysis. In addition, if
more than half of the beats in the window were labeled as
artifact according to the ECG, the features were not calcu-
lated.

2.5. Leave-one-subject-out cross-validation

The model was trained and the classification perfor-
mance was tested by using leave-one-subject-out cross-
validation. The classification was made by combining the
features with logistic regression to give a probability for
AF in each time window:

X (1)

= T eXo ¥

par(t)

where ¢ is the index of the window, X (¢) a vector con-
taining the feature values for the window at time ¢, and b
a vector of the model coefficients. The threshold for the
probability to classify a window as AF was defined by the
Youden index [16].

The model parameters were trained first with the 5-
minute data of 31 subjects, leaving data of one subject
for testing. The trained model was tested both with the
5-minute data of this subject as well as with the 24-hour
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Figure 2. Durations of false positive detections.

data of this subject. This was repeated 32 times using data
of each subject for testing once. For comparison, the same
procedure was repeated by using the entire 24-hour data
for training the model and testing the performance.

3. Results

The aggregated results of the classification performance
from the cross-validation are presented in Table 1. The
measurement coverage for the 24-hour data when using the
constraint of 20 IPIs was 49.5% and in the case of no con-
straints 63.3%.

The classification performance decreased when the
model was tested with 24-hour data. With less constraints
and higher coverage, the decrease was larger. Speci-
ficity and positive predictive value (PPV) were affected
more than sensitivity and negative predictive value (NPV).
When the models were tested with the 5-minute data seg-
ments, there were false positive AF detections with only
two of the subjects. With the data from daily life, all of the
subjects had false positive detections. On average there
were 172 £ 92 false positives per subject when using the
20 IPIs constraint and 467 £ 328 when no constraint was
used. Figure 2 shows how the total durations of the false
positives per subject are distributed.

4. Discussion

The classification model achieved a high performance
with 5-minute measurements independent of the constraint
used. When testing the model with the data from daily life,
the constraint used for calculating the features influenced
both the classification performance and the measurement
coverage. When more data was judged as analyzable, the
performance decreased. This is in line with other stud-
ies [9, 10]. The difference in performance depending on
the selected constraint was only observed with the data

Page 3



Table 1. Classification performance. All metrics are presented as percentages (%).

20 IPIs No constraints
Msmin -5Smin  Msmin - 24 hours  Moyy, - 24 hours | Msmin -5Smin - Msmin - 24 hours  Moyy, - 24 hours
Sensitivity 98.82 97.74 96.48 98.90 96.94 94.58
Specificity 99.01 96.28 96.79 99.03 91.99 93.91
NPV 99.20 98.57 97.81 99.23 97.80 96.36
PPV 98.53 94.19 94.88 98.63 88.79 91.05
Accuracy 98.93 96.84 96.67 98.98 93.91 94.17
M5min = model trained on 5-min data, M241, = model trained on 24-h data, NPV = negative predictive value, PPV = positive predictive value.

from daily life. Therefore, measurements from daily life
are needed in order to optimize the constraints.

5. Conclusion

The classification performance of an AF detection
model developed with short measurements from a sta-
ble setting decreased and especially the number of false
positives increased when tested with data from daily life.
Therefore, testing AF detection models with daily life data
is essential to have a realistic estimate of the detection ac-
curacy and understanding the constraints required in order
to achieve a high performance.
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