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Abstract

Body surface potential mapping (BSPM) provides high
spatial resolution recordings of the electric potential of the
heart on the body surface. BSPM can involve up to 200
electrodes, in contrast to standard 12-lead ECG. The costs
and complexity of a BSPM procedure are a limiting fac-
tor to its use in clinical practice. Both can be reduced
by using fewer electrodes and reconstructing signals from
the missing electrodes with an artificial neural network.
The minimal configuration consists of the electrodes that
are most relevant for reliable reconstruction. We propose
an architecture for a variational autoencoder, trained on
BSPM procedures from the Nijmegen dataset: EDGAR [1],
to reconstruct a full 65-lead system from a reduced num-
ber of input electrodes. Further, we determine the effect of
an increased numbers of missing electrodes on the corre-
sponding reconstruction error, and show that it is possible
to achieve a good 65-lead reconstruction from as few as 12
electrodes. We consider the implication of our research in
the scope of current BSPM practice, as well as the limita-
tions of using neural networks for this task.

1. Introduction

Heart diseases are among the most common causes of
death worldwide [2]. Today, the 12-lead electrocardio-
graphic (ECG) system remains a standard cardiovascular
diagnostic procedures among medical professionals. How-
ever, the accuracy of the 12-lead ECG has been called into
question due to the fact that necessary diagnostic informa-
tion may not be captured by this recording system, for in-
stance when detecting acute myocardial infarction (AMI)
[3]. Other studies have shown that by using Body Sur-
face Potential Map (BSPM) recordings, a higher degree
of accuracy is gained in correctly detecting heart condi-
tions [3]. BSPM also measures the electrical potential of
the heart on the body surface, but it employs (many) more
electrodes then the standard 12-lead ECG [4]. The addi-
tional information gained with BSPM is used, among all,

when finding a reliable solution to the inverse problem in
electrocardiography (also known as ECG-Imaging). Al-
though superior in terms of diagnostic yield, BSPM is not
widely used in clinical practice. This may be due to the
higher costs associated with this procedure, more time and
trained personnel needed for the set up, and the lack of a
standardized BSPM measurement system. More than 11
BSPM systems [5] could be found during our literature
review, which have completely different electrode counts
(from 32 to 219) and electrode positions.

One way to overcome these limitations would be to use
partial data from a limited (and optimal) set of body sur-
face electrodes in order to reconstruct the whole BSPM
data matrix [6]. Several studies have addressed the ques-
tion of how many electrodes are necessary with the pur-
pose of completing partial BSPM data in the study of atrial
fibrillation (AF). In [7], researchers argued that it has been
generally accepted that 30-32 electrodes are sufficient. In
[4], it has been proven that 23 electrodes are needed to re-
construct the AF data with 25% error rate, while 17 and 8
electrodes are required for rebuilding QRS complex and P
wave, respectively.

This study proposes the use of an artificial neural net-
work to reconstruct missing BSPM recordings starting
from a limited set of BSPM electrodes. The reconstruc-
tion of the data from the missing electrodes is achieved
by using a variational autoencoder (VAE). First the opti-
mal architecture for the VAE and the corresponding op-
timal parameter setting are investigated. Next, the mini-
mal BSPM electrode configuration required for an accurate
reconstruction is determined, and qualitatively compared
with the standard 12-lead ECG.

2. Methodology

2.1. Data

The data used in this study were retrieved from the
EDGAR Time Signal Catalog, contributed by the Rad-
boud University in Nijmegen, Netherlands [1]. The dataset
consisted of BSMP measurements from a single healthy
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Figure 1. Structure of KurtNet’s encoder. Decoder is a
mirrored structure from last dense layer to the first convo-
lutional one.

male patient (65 electrodes 12 on the back and 53 on the
front). Recordings were taken over 13 different proce-
dures. Recordings from one procedure were used to train
the network, while all the other recordings were used for
validation and for determining the minimal BSPM config-
uration. The signals were downsampled to 512 Hz from
1024 Hz. Breathing frequencies were removed from the
signals with a high-pass Chebyshev II filter of order 2 and
cutoff of 0.5 Hz.

2.2. VAE architecture

We considered three different architectures for the VAE:
image classification networks AlexNet [8] and VGGNet
[9], and KurtNet, which is based on an autoencoder de-
sign generated in house. Figure 1 shows the encoding part
of KurtNet, which has significantly fewer parameters due
to the smaller number of units in each convolutional and
dense layer. In order to transform these networks into ap-
propriate VAEs, they had to first be expanded after their
output layer, which was repurposed as a sampling layer.
The encoder - decoder architecture was obtained by mir-
roring the previous layers and exchanging downsampling
layers for upsampling layers. Other than the input layer
and the sampling layer, the network architectures were
fixed. This way, it was possible to keep the amount of hy-
perparameters under control. The input layer corresponds
to all samples from all BSPM leads in a given time in-
terval (window), while the sampling layer is considered
the network’s internal representation of the data. All three
architectures were tested with sampling (or latent) layer
dimension of 12, 18, 24 nodes and a window length of
2, 3 and 4 seconds. Performance was assessed in terms
of mean squared reconstruction error between the recon-
structed and the original signals.

2.3. Minimal BSPM configuration

In order to find the most significant electrodes for the
reconstruction, we systematically attempted to reconstruct
the full BSPM data matrix after excluding an iteratively
increasing number of electrodes from the input. Missing
recordings were replaced with zeros. This can distort the

features learned from the measurements, and we counter-
acted it by reiterating the reconstruction n times (by re-
applying the forward pass through the network while re-
placing the missing recordings with their reconstructions).
Several values of n were tested, to investigate its influence
on the reconstruction error.

Testing all possible electrode combinations would have
been far too computationally intensive, as for our dataset
there are 65! possible electrode combinations. Therefore,
we decided to iteratively drop the least significant elec-
trodes, until no electrode was left. All corresponding con-
figurations were tested and the set of 12 electrodes that
gave the lowest reconstruction error was selected as the
minimal BSPM configuration for this study. The loca-
tions of the 12 most important electrodes were then visu-
ally compared to the standard 12-lead ECG.

3. Results

3.1. VAE architecture

Figure 2-left shows the evolution of the validation error
of the three architectures over the training epochs (with all
networks trained for 50 epochs). Performance of the three
networks was tested for different window lengths (of 2, 3,
and 4 seconds), and latent layer sizes (of 12, 18, and 24).
Figure 2-right shows the final validation errors for KurtNet
and AlexNet, for all possible combinations of the window
length and latent layer size. The best architecture chosen
for further experiments was KurtNet with a window length
of 2 seconds and a latent layer size of 24 (KW2L24).

3.2. Minimal BSPM configuration

Figure 3 shows the reconstruction error as a function of
the number of less significant electrodes dropped and the
number n of reconstruction iterations in the network. Fig-
ure 4 shows a reconstruction of 64 BSMP recordings from
the 12 most significant electrodes (for signals the network
was not trained on), marked with green boxes. n = 12 was
used to achieve this reconstruction, as it was associated
with a robust reconstruction over different electrode drop
counts (based on the results showed in Figure 2). When
performing such reconstruction with 12 electrodes, we ob-
tained a mean square error of 11.210 ± 0.408 mV over
100 predictions. Finally, Figure 5 shows the BSPM system
mapped to the human torso with the final 12 most relevant
leads shown in red.

3.3. Conclusions

In this study, we presented an approach for the recon-
struction of signals from missing BSPM electrodes based
on a variational autoecoder. We evaluated three possible
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Figure 2. (Left) Validation error over 50 training epochs for KurtNet (red), AlexNet (green) and VGGNet (blue). (Right)
Final validation error after training for 50 epochs for KurtNet and AlexNet to show the different effects of hyperparameters:
window sizes of 2, 3, 4 seconds and latent dimensions 12, 18, 24.

Figure 3. Reconstruction errors using KW2L24. The color
gradient shows dark blue for low values and red for high
values. X axis shows the number of reconstructions n, Y
axis is the number of leads dropped and Z axis shows the
corresponding error. The main area of interest it the dark
blue plateau of low error values before the error climbs as
too many electrodes are missing.

architecture for the autoencoder, AlexNet [8], VGGNet
[9], and KurtNet, which was developed in house. Kurt-
Net showed the best performance on the validation data
set, and it was able to capture the features of the ECG
signals better than the former two (which sometimes pre-
dicted simple straight lines).

When looking for the minimum BSPM configuration,
we noticed that dropping up to about 25 electrodes does not
have a strong impact on the reconstruction error. However,
when over half of the electrodes are missing, it is necessary
to repeat the forward pass up to 8 times to have a reliable
reconstruction. When most of the electrodes are missing,
it no longer matters how many reconstruction passes are
performed, as there is too much missing information, and

the additional reconstructions are detrimental as they will
reinforce any erroneous patterns in the wave-forms. In this
study, we could achieve a good reconstruction with just 12
electrodes. From Figure 4 it can be seen that there is still a
visible difference between the reconstructed and the orig-
inal signals, but the positions of peaks and general wave-
form morphologies are well modelled by the neural net-
work. We also observed that sometimes out of two peaks
present in the ground truth signal, only one was recon-
structed properly. We assume this may be caused by the
model being over-fitted to the training data and the features
of the peaks not being prevalent enough to be captured by
the autoencoder. Repetition through the network then natu-
rally increases this error, reconstructing only a single peak.
This will need to be investigated in a future study. When
considering the positions of the most relevant electrodes
for reconstruction onto the human torso, we could notice a
good agreement between those and the locations of the pre-
cordial leads in the standard 12-lead ECG (left chest and
lower-left back areas in Figure 5). Moreover, we could no-
tice the appearance of few more leads on the back. This
suggests that adding a few extra electrodes to the standard
12-lead ECG may be enough to provide an accurate recon-
struction of BSPM recordings by means of ANN.
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Figure 4. Ground Truth signal (blue) and KW2L24 reconstruction (red) for data the network was not trained on after n=12.
Reconstruction using 12 best leads marked by green frames.

Figure 5. Representation of 12 most significant leads from Figure 4. Patient lying with head into the paper facing down
(left) and up (right).
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