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Abstract

We assess the feasibility of heart rate variability (HRV)
estimated from interbeat interval (IBI) data measured with
wrist-worn photoplethysmography device for sleep stage
classification. In particular, we examine fractal correla-
tions in the IBIs as the function of both time and scale.

Optical heart rate sensor by PulseOn Ltd was utilized
for monitoring IBIs from 18 healthy young adult subjects.
Reference ambulatory polysomnography recordings were
scored by a sleep physician. The HRV was studied by de-
trended fluctuation analysis by computing scale-dependent
spectra of scaling exponents o(s). Dynamic changes were
tracked by calculating the spectra a(s,t) in moving tem-
poral windows whose length varied with the scale.

The dynamic landscapes of the alpha spectra show dis-
tinctive fractal correlations according to the underlying
sleep stages. Respiratory effects, blood pressure varia-
tions, and thermoregulatory influence appear to be dis-
cernible as well. Classification of the alpha spectra yields
up to 73 %, 60 % and 54 % average accuracies for 3-class
(wake, REM, NREM), 4-class (wake, REM, N1+2, N3) and
5-class (wake, REM, N1, N2, N3) cases, respectively.

1. Introduction

General interest for intelligent health and wellness prod-
ucts has become increasingly prevalent in the recent times.
Sleep quality has a profound effect on everyday well-
being. Sleep consists of distinct recurrent phases serving
diverse physiological purposes. Knowledge of this sleep
structure is essential for assessing sleep quality or diag-
nosing sleep disorders. In clinical practice the sleep stages
are determined by polysomnography (PSG) predominantly
from the brain activity, requiring evaluation by experts.
Wearable sensor technology has permitted cheap and un-
obtrusive monitoring of physiological signals that previ-
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ously required expensive examinations in clinical condi-
tions. However, the precision of sleep stage monitoring by
these devices is not yet medically sufficient.

We assess the feasibility of heart rate variability (HRV)
measures for sleep stage classification utilizing interbeat
intervals (IBIs) obtained from wrist-worn photoplethys-
mography (PPG). We study HRV by detrended fluctuation
analysis (DFA), which is a popular tool for determining
fractal correlations in non-stationary time series. DFA as-
sesses power law scaling of the fluctuations F'(s) o s®
from a local trend as a function of the scale s. The time se-
ries is interpreted as the increments of a random walk, and
the detrending permits meaningful analysis in the presence
of non-stationarities [1]. We propose a novel expansion to
the method in order to accurately study dynamic changes
in this scaling as the function of both scale and time.

2. Theory

In the standard formulation of DFA the fluctuation func-
tion F'(s) is computed as the mean fluctuations over non-
overlapping windows of length s [1, 2], but its statisti-
cal properties may be improved by utilizing overlapping
windows [3]. As power laws are transformed into linear
relationships on logarithmic scale, the scaling exponents
are conventionally determined by linear regression on the
logarithmic fluctuation function [1,2]. However, in prac-
tice many phenomena deviate from exact power law scal-
ing, which is often observed only over limited ranges of
scales. This could be taken into account by computing
a whole spectrum of scaling exponents «(s) as a func-
tion of the scale [4—6]. The scaling may also exhibit tem-
poral variations due to changes in external conditions, or
the process itself may be comprised of distinct intrinsic
modes. Straightforward segmentation of the time series
suffers from the following limitations: The largest scale is
dictated by the segment length to ascertain sufficient sta-
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tistical accuracy, and the temporal resolution of the shorter
scales is compromised by the longer segments required for
the larger scales. Therefore we adopt the following proce-
dure to dynamically adjust the segment length as a function
of the scale.

1. For each scale s, divide the time series into scale-
dependent segments of length I(s) by, e.g., I(s) = 5s.

2. In each segment S, ., identified by the temporal in-
dices ¢, compute the fluctuation function at the scales
{s —1,s,s+ 1}. These computations should be carried
out by utilizing maximally overlapping DFA windows.

3. Estimate the local alpha spectra «(s,t) by, e.g., finite
difference scheme from the logarithmic fluctuation func-
tion, as the smoothness of the overlapping DFA procedure
permits direct numerical differentiation.

3. Methods

Optical wrist heart rate monitor manufactured by
PulseOn Ltd was used in the collection of beat-to-beat
interval data. The device uses proprietary algorithms for
heartbeat detection and signal quality assessment so that it
provides only reliable beat-to-beat intervals to the user [7].
Data was collected from 18 students (average age 28 years,
range 21-42 years) with no history of diagnosed sleep dis-
orders. Nox Al ambulatory PSG system from Nox Med-
ical was used to record the reference data. The measure-
ment devices were worn on the subject in the afternoon
preceding the measurement night and the recording was
done at subject’s home. Subjects turned on the recording
in the PSG and the wrist device before going to bed. Sleep
physician visually confirmed and corrected the results of
the initial automatic sleep staging performed by Noxturnal
sleep study software in standard 30s epochs. An ethical
assessment for the study was provided by the ethical com-
mittee of Tampere University Hospital (R17171).

Based on the PPG sensor signal quality assessment the
data from one subject had to be discarded. In addition
to this intrinsic filtering, possible additional artifacts, e.g.
missed beats or non-sinus originated extra beats, were re-
moved if the IBIs differed more than 50 % from the local
median within 51 beat window.

We utilize temporal slices of the alpha spectra a(s, t)
as features for classification of the sleep phases. First,
we limit our analysis to scales < 500 beats and aggre-
gate the features by computing the mean spectra and its
standard deviation from all the slices within each epoch.
Then we normalize the spectra to the unit interval based
on the quantiles of observed scaling exponents and their
standard deviations for each scale and subject separately.
These HRV features are supplemented by similarly aggre-
gated heart rate data within the dynamic DFA segments.

We apply principal component analysis (PCA) to reduce
the dimensionality of the feature vectors. The classifica-

tion is then performed by support vector machines (SVMs)
with radial basis functions. We cross-validate our results
by leave-one-subject-out strategy with balanced accuracy
as our performance metric, which is defined as accuracy
with each sample weighted proportional to the inverses
of class prevalences. Hyperparameters (PCA components
and SVM penalty parameter) are optimized by a simple
grid search.

The raw predictions from the classifier are regular-
ized by Bayesian filtering to reduce noise in the hypno-
grams by taking into account common sleep structure. We
perform bootstrapped sequential importance resampling
(SIR) with the importance distributions based on epoch-
by-epoch sleep state transition probabilities. The particles
are weighted based on the observation probabilities de-
rived from the confusion matrices of the classifier predic-
tions. The leave-one-subject-out scheme is enforced when
computing these probabilities.

4. Results

The IBIs are found to exhibit rich patterns in their frac-
tal correlations during different sleep phases. An example
of these correlations as a function of the scale and time
is shown in Fig. 1. While a general trend is noticeable
during different sleep phases, particularly at the shortest
scales, considerable variance exists within the same sleep
phase. Regardless, distinct fractal correlations are found
during different sleep phases when averaging over the sub-
jects and temporal slices of the alpha spectra, which is il-
lustrated in Fig. 2(a). The differences in the mean corre-
lations are statistically significant over extended ranges of
scales, except for separating the N1 and REM states. How-
ever, there is considerable inter- and intra-subject variance,
which complicates straightforward analysis. The inter-
subject variance is reduced by the quantile-based normal-
ization, as can be seen in Fig. 2(b). The intra-epoch vari-
ance exhibits dependency on the sleep state, as shown in
Fig. 2(c), which is utilized for the classification.

The prevailing trend is that the deeper the sleep phase,
the less correlated the IBIs become. The qualitative be-
havior as a function of the scale is similar for each sleep
phase. Elevated correlations at the very shortest scales are
well-known artifacts intrinsic to DFA. The first minimum
in the alpha spectra is likely related to cyclic respiratory ef-
fects, resulting in superimposed anticorrelations lowering
the scaling exponent. Increased correlations at the scale of
roughly 10 beats is observed across all the sleep phases,
and this may be related to blood pressure variations [8].
The increase is larger in deeper stages of sleep, which is
consistent with previously studied short-term variabilities
of blood pressure and IBIs [9].

The correlations decrease again towards the scales in the
region of 20 beats, which could be associated with temper-
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Figure 1. Dynamic DFA example. The scaling exponents and the beat rate are derived from the PPG measurements and
the sleep phases are from the reference PSG annotations.
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Figure 2. Mean alpha spectra (a) with their standard errors during different sleep phases when averaged over the subjects
and time. In (b) the data has been normalized into the unit interval based on quantiles of observed scaling exponents
separately for each scale and subject. The standard deviation of the spectra within the epochs is shown in (c).
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Figure 3. Confusion (a,b) and state transition matrices (c). The results in (a) are the raw predictions by the SVM classifier,
and the results of the corresponding filtered predictions are shown in (b). Balanced accuracy as defined here is equivalent
to the mean of the confusion matrix diagonals. Epoch-to-epoch sleep state transition probabilities are illustrated in (c). The
matrices are computed by combining the data for all the included subjects.
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ature regulation [10]. The authors propose no physiologi-
cal explanation for the subsequent longer scale fluctuations
in the spectra, but point out that they are qualitatively sim-
ilar during all the sleep stages with the magnitude of the
fluctuations decreasing in deeper sleep.

We note that after approximately 200 beats the correla-
tions start to converge towards common long-range behav-
ior. This is expected, as the sleep phases are determined
from the reference annotations for the epochs indicated by
the mean time within the dynamic DFA segments, result-
ing into overlap with different sleep phases at the longest
scales. We justify this from the viewpoint of predicting the
sleep phases from the correlations, in which case the data
cannot be separated a priori. This also provides an ex-
planation for the indistinctiveness of the N1 state, as these
phases are very short, resulting in their alpha spectra being
largely influenced by the surrounding Wake and N2 states.

Even with relatively large variance in the correlations,
limited classification of the sleep phases is possible based
on the fractal correlations alone. Leave-one-subject-out
cross-validation strategy yields 43 % class-balanced accu-
racy for the 5-class case (Wake, REM, N1, N2, N3). Incor-
porating heart rate into the feature set and introducing the
filtering of the raw predictions increases this accuracy to
47%. Different metrics for the classification results are
listed in Table 1. The results for 4-class (Wake, REM,
N1+2, N3) and 3-class (Wake, REM, NREM) cases are
comparable to Fonseca et al., except our results are based
on the fractal correlations instead of ensembles of HRV
metrics [11]. The filtering is observed to improve the met-
rics, but as is evident from the full confusion matrices of
Fig. 3, the N1 state is essentially precluded. The overall
state transition probabilities are shown in Fig. 3(c), but for
each subject their data is excluded prior to the filtering.

Table 1. Classification results for different number (#) of
classes. For each score the left column contains the raw
results from the classifier and the right column depicts the
results after filtering the predictions.

# Accuracy Bal. accuracy Cohen’s k

5 0.465 0.542 | 0.460 0.471 | 0.288 0.352

4 0535 0.601 | 0.538 0.570 | 0.313 0.384

3 0.668 0.725 | 0.618 0.622 | 0.373 0.434
S. Conclusion

Wrist-wearable PPG sensors are adequate for advanced
HRYV analysis. Respiratory effects, blood pressure varia-
tions, and thermoregulatory influence appear to be visible
in the alpha spectra. Other longer scale fluctuations are
also present in the spectra, but their interpretation requires
further research. The dynamic DFA reveals distinct frac-

tal correlations during different sleep phases. The method
allows increased temporal resolution at the shortest scales
while simultaneously incorporating larger scale behavior
into the analysis. The temporal resolution is gained at the
expense of increased variance. However, the variance itself
also contains information, as its magnitude varies accord-
ing to the sleep phases. Limited sleep phase classification
is possible from the fractal correlations alone, but supple-
menting other information from wearable sensors with the
dynamic DFA features is expected to enhance the accu-
racy of low-cost ambulatory sleep stage monitoring. The
filtering of the raw classifier predictions is also a promising
direction for further research.
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