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Abstract 

Acquisition of capacitively-coupled ECG (ccECG) from 
daily life scenarios is limited by its sensitivity to motion 
and its variability in signal quality. 48 features, in 
combination with different classifiers, were evaluated for 
quality classification on a dataset of 10000 ccECG 
segments of 15 seconds. Feature subsets with potential 
high discriminatory power were identified and evaluated 
in multiple supervised models, for two classification 
problems with different tolerance to artefacts. This 
resulted in balanced accuracies of 94.02% and 92.4%, 
achieved using a Linear SVM and a fine KNN respectively. 
These models are useful tools for real-time and offline 
processing of ccECG signals recorded in real-life 
scenarios 

 
1. Introduction 

Long-term electrocardiography (ECG) recordings from 
real-life environments have been an important focus of 
recent research [1-4]. Capacitively-coupled ECG (ccECG) 
has been demonstrated as a technology that has the 
potential to achieve recordings from real-life environments 
and enable unobtrusive health monitoring [1,2], thereby 
improving the quality of life of people and lowering 
healthcare costs (e.g. by early diagnosis and timely 
treatment). 

Despite the advantages of ccECG, it is highly 
susceptible to motion artefacts (MAs) [1–3], which are 
particularly problematic in recordings from real-life 
environments (e.g. while driving, while sleeping). This 
leads to a wide range of signal quality [4] and limits most 
of its use to experiments in controlled conditions. A 
promising approach to increase the robustness of extracted 
cardiac information is the use of signal quality indicators 
(SQIs) and quality-based classification models (CMs). 
These CMs enable MA handling methods, such as offline 
post-processing and real-time hardware adaptation 
methods [5,6], to be applied in real-life scenarios. 

Since artefacts and noise in ccECG can be different than 
in contact ECG [3], conventional ECG SQIs may not be 

sufficient as an indicator of ccECG quality. Furthermore, 
the required signal quality depends on the specific intended 
use or application. 

Some work on ccECG signal classification has been 
published in recent years. This includes the use of ‘filter 
masks’ to identify saturation, high frequency content and 
low signal power, with a reported balanced accuracy (BA) 
of 64.5% (44% sensitivity & 85% specificity) when 
evaluated in laboratory conditions [7]. Another approach 
[8] included a logistic regression model using pressure 
signals and an evaluation of signal saturation, which 
resulted in overall BA of 88.5% (93% sensitivity & 84% 
specificity) when evaluated in an airplane seat setting. An 
evaluation of driving monitoring [9] reported different 
quality-based classification algorithms. This resulted in a 
best-performing result with BA of 75% (54.7% sensitivity 
& 95.3% specificity). 

In this work, the use of 48 SQI features was evaluated 
in different classification models. Different feature subsets 
were fed into multiple supervised models, and their BA 
was obtained as a performance metric. 

 
2. Methods 

2.1. Dataset 

ccECG signals from diverse scenarios were used. These 
signals included data recorded from a system described in 
[5,10] as well as from the publicly available UnoVis 
dataset [11]. The data comprised 10000 randomly selected 
ccECG segments of 15 seconds, resulting in the 
distribution shown in Table 1. For each scenario data with 
floating sensors (e.g. no user present) was included, to 
allow a classification in this scenario. Because of this, the 
quality distribution of the data does not represent the signal 
coverage (i.e. percentage of good signal evaluated when 
user present) that is expected in practice. A coverage 
evaluation (e.g. in real-life in different scenarios) is out of 
the scope of this work. 
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 Five annotators with experience in ECG signal 
processing labelled the segments using three quality levels: 
1. Useless or no ccECG; 2. ccECG with artefacts that may 
affect the detection of 2 to 5 heartbeats; 3. ccECG useful 
for heart rate variability (HRV) analysis and possibly 
morphology analysis. In total, 90 segments with strong 
annotation disagreement (i.e. labelled as both 1 and 3 by 
different annotators) were discarded, resulting in a 9910-
segment dataset. The remaining segments had an 
agreement of at least 3 annotators and a Fleiss’ Kappa of 
0.80.  
 
2.2. Feature selection & classification 

The three quality levels were assigned to two binary 
classification problems: one with a ‘low threshold’ (level 
1 vs level 2-3) -classifL- and another with a ‘high 
threshold’ (level 1-2 vs level 3) -classifH- (Table 2). This 
division allows to evaluate classifications in which signals 
with moderate artefacts are still considered useful as well 
as a stricter classification that only considers level 3 signals 
as useful. Different scenarios can benefit from these 
classifications (e.g. for -classifL- problem for HR and 
HRV extraction, -classifH- problem for morphology 
analysis). Each dataset was randomly divided in 70% 
training and 30% test, preserving the binary distribution 
ratio.   

48 SQI features were extracted from each ccECG 
segment, including the features evaluated in [10]. Feature 
selection (FS) was performed on the training set by means 
of: 1. neigborhood component analysis (NCA) [12] 
available in the machine learning toolbox of Matlab®; 2. 
Random Forest (RF) classification as proposed in [13]; and 
3. threshold-based one-level decision tree (DT) 
classification performance. The classification performance 
of different feature subsets identified by the FS methods 
was evaluated. This was done by training and validating 19 
different supervised classifiers for both binary 
classification problems (i.e. -classifL- and -classifH-).  

An important part of the data included floating sensors, 
which caused the class distribution to be unbalanced. 
Therefore, all the model training was done by setting a 
prior probability distribution of the classes as uniform (i.e. 
balanced distribution), so that the classification methods 
compensate for the dataset imbalance. In addition, the 
metric BA [14] was used to compare the models. This 
avoids an overestimation of the classification performance. 
 
3. Results and discussion 

For each problem, a feature subset was obtained from 
each of the three FS methods. Table 3 shows the best-
performing SQI feature subset from each method for each 
problem, together with the best performing classifier and 
its corresponding BA. A brief description of the selected 
features is presented below. 

 
corrSQI: Average correlation of the beats with a template 
extracted from the signal. The metric is obtained by 
averaging (corrSQImean) or obtaining the average without 
outliers (corrSQItrimmedmean), or the median 
(corrSQImedian) of QRST complexes from the ccECG 
window and computing the average of the individual 
correlations of the template with each of the beats. This 
was done by using the beat detector from [15]. This SQI 
was individually evaluated for ccECG by the authors [10] 
and previously proposed for contact signals [16] .  
bSQI: Comparison of the beat detections from two 
algorithms ([17] and [18]). It is based on calculating the 
agreement rate of these. More details can be found in [19] 
and [20]. An initial evaluation of this metric by the authors 
on ccECG can be found in [10]. 
SDR: Ratio between power spectral density of band of 
interest and a broader band. (i.e. [5-14] Hz and [0-50] Hz). 
This was initially used in [19] for contact ECG for different 
limits, and evaluated by the authors for ccECG in [10]. 
msSQI: Modulation spectrum metric originally proposed 
in [21]. It consists of the windowed calculation of the 
frequency spectrum of the signal, followed by the spectrum 
of the spectral magnitudes. This results in a frequency-
frequency representation used to extract the modulation 
energy of the signal. Details for its calculation can be found 
in [21]. 
bkSQI: Kurtosis-based metric using experimentally 
determined Kurtosis ranges of the mean Kurtosis from 

Table 1. Overview of all ccECG segments included in 
the evaluation of quality-based classification models. 

Data source Data type 
Number of 
segments 

Data 
recorded 
from system 
in (5,10)  

Static car seat 2500 
Bed form factor 2500  
Office chair, normal 
working conditions 

1520 

While driving a car 480 

UnoVis 
database (11)  

While driving a car 1000  
Bed form factor 1000  
Armchair form 
factor, induced MAs 

1000  

 

Table 2. Overview of the quality distribution for the 
two problems. 

Classification 
problem 

Binary 
quality 

grouping 

Distribution 
(Bad vs Good) 

‘classifH’ 
{1,2} (Bad) vs 3 

(Good) 
80.5% vs 19.5% 

‘classifL’ 
1 (Bad) vs {2,3} 

(Good) 
65.8% vs 34.2% 
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each QRS beat. This metric receives a value of 1 when the 
per-beat Kurtosis is in the range (4.4-21) and a value of 0.5 
for Kurtosis in the range (3.8-4.4) and (21-40). Other 
Kurtosis values are fixed to 0.3. 
sKurt: Kurtosis calculated for each 15-second sement. 
bSkewMod: Skewness-based metric. It replaces too-high 
values of the averaged Skewness calculated for each 
extracted QRS beat using experimentally determined 
limits. Average per-beat Skewness is kept for values lower 
than 3.5. A value of 0 is assigned to the metric for higher 
Skewness. 
VrmsSQIper: Percentage of sub-windows in the (0.005 – 
0.4) mVrms range. Sub-windows are 750 ms wide. 
SD_b2b: Standard deviation of beat-to-beat HR values 
(extracted from the RR intervals). 
SD_QSw: Standard deviation of Q-S durations measured 
in ms. 
MedianAD_QSw: Median Absolute Deviation of Q-S 
durations measured in ms. Calculated from the beats in the 
window. 
MeanAD_QSw: Mean Absolute Deviation of Q-S 
durations measured in ms. Calculated from the beats in the 
window. 
MedianAD_QRd: Median Absolute Deviation of Q-R 
distances (Q-R trace) from the beats in the window. 

 
It can be seen from Table 3 that the FS methods partially 

agreed on the selected features. Specifically, the corrSQI 
appears in all the feature subsets. This is in agreement with 

previous work [10], which concluded that this SQI has the 
highest performance when used as a stand-alone ccECG 
SQI.  

The results of the best 5 classifiers (with BA > 80%) for 
each of the feature subsets are shown for the ‘classifH’ and 
‘classifL’ problems in Figure 1 and Figure 2 respectively. 
In addition, the classification performance when using all 
the 48 features is included for reference purposes. 

The resulting CMs achieved a maximum BA of 94.02% 
(95.19% sensitivity & 92.85% specificity) –for the 
‘classifH’ problem, with a linear Support Vector Machine 
(SVM)-, and 92.4% (89.97% sensitivity & 94.84% 
specificity) – for the ‘classifL’ problem, with a fine K-
nearest neighbors (KNN) classifier-. These accuracies are 
higher than previously reported ccECG classification 

Table 3. List of best-performing feature subsets for both 
datasets, with the corresponding classifiers and BAs. 

Problem Method SQI Features 
Classifier 

(BA) 

 ‘classifH’ 

NCA 
{corrSQItrimmedmean

, bSQI, SDR2, msSQI, 
bkSQI, SD_QSw} 

Coarse 
Gaussian 

SVM 
(93.69%) 

RF 
{corrSQItrimmedmean

, SDR2, sKurt} 

Linear 
Discrimin

ant 
(93.71%) 

DT 
{corrSQImean, 

VrmsSQIper, SD_b2b} 

Linear 
SVM 

(94.02%) 

 ‘classifL’ 

NCA 

{SD_b2b, bSQI, 
MedianAD_QSw, 

bkSQI, corrSQImean, 
corrSQImedian, sKurt, 

bSkewMod, 
MeanAD_QSw} 

Fine KNN 
(92.4%) 

RF 
{corrSQImedian, bSQI, 
SD_b2b, VrmsSQIper, 

MedianAD_QRd} 

Fine KNN 
(90.84%) 

DT 
{corrSQImedian, 

VrmsSQIper, SD_b2b} 

RUS-
Boosted 

Trees 
(91.74%) 

  
Figure 1. Results of the best 5 classifiers for each feature 
subset, for the ‘classifH’ problem. 

  
Figure 2. Results of the best 5 classifiers for each feature 
subset, for the ‘classifL’ problem. For NCA, only the 
FineKNN resulted in a BA higher than 80%.  
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literature mentioned in the introduction section, with max. 
BA of 88.5% [8].  

The distinction of two classification problems allows to 
not only identify clean signals, but also signals with MAs 
that still contain ECG information, which is a more 
challenging classification problem. 

Although classifiers using all the 48 features had 
slightly higher BAs than the presented CMs after FS, the 
latter allow to perform this classification with a reduced set 
of features. This significantly lowers the computational 
complexity, while keeping high BAs. Low-complexity 
CMs are useful in real-time artefact handling approaches 
and allow for fast post-processing approaches to improve 
the extracted information from unobtrusive, ubiquitous 
ECG monitoring.  
 
4. Conclusions 

This work presented CMs with high BA to be used in 
the automatic classification of ccECG signals from real-
life environments. It was found that a DT-based feature 
subset with a linear SVM performs best for a ‘classifH’ 
problem, while an NCA-based subset with a KNN 
classifier performs best for a ‘classifL’ problem. 

This type of classification is relevant not only as a post-
processing tool, but also for real-time hardware adaptation 
approaches such as the modification of hardware settings 
[5] or the selection of electrodes from high-density arrays 
[6]. These tools are expected to result in increased 
coverage when acquiring signals from real-life scenarios 
and a reduction in the error of specific features of interest 
such as heart rate and heart rate variability. High-
performance classification models and SQIs such as the 
ones presented in this work are key to enabling the use of 
ccECG collected from daily life, in order to allow health 
monitoring and long-term follow-up of patients. 

Fine tuning of the classification cost of the models 
depending on the specific applications, and application-
driven evaluations are necessary to further confirm the 
usefulness of these classification tools. 
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