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Abstract

This work intends to devise an efficient feature extrac-
tion scheme for identifying common cardiac abnormalities
using the Fourier-Bessel (FB) expansion of RR-intervals
and time-frequency based features of Electrocardiogram
(ECG) signals. The Bessel basis, when used for represent-
ing the RR-intervals, meaningfully enhances the pathologi-
cally induced low-frequency changes in terms of FB coeffi-
cients. To ensure the characterization of diverse patholog-
ical variability present in the ECG signals, time-frequency
domain features are also extracted using scattering trans-
form. The multi-label classification of the ECG signals, for
five different lead combinations, is performed using Gated
recurrent unit into specified twenty-six categories. The ex-
perimental outcomes, for five-fold cross validation using
2021 PhysioNet/CinC Challenge dataset, demonstrates the
challenge scoring metric on the twelve-lead, six-lead, four-
lead, three-lead, and two-lead combinations as 0.4038,
0.4270, 0.4296, 0.4380, and 0.4482 respectively. Accord-
ing to the results, the proposed method justifies the use of
the FB and scattering transforms together for the detection
and identification of common cardiac problems using ECG
signals.

1. Introduction

Cardiac abnormalities are the leading cause of the death
globally [1]. Prompt diagnosis of these abnormalities can
significantly reduce the mortality rate across the world.
The 12-lead electrocardiogram (ECG) is commonly used
in practice for diagnosis of cardiac abnormalities[2]. How-
ever, reading an ECG requires a highly trained professional
to perform the task and it is a time consuming process.
Therefore, the system that can automatically classify ECG
signals to detect cardiac abnormalities can help physicians
to diagnose and handle more patients. A number of au-
tomatic ECG signal classifiers have evolved over the last
decade.

However,the majority of them make use of small or ho-
mogeneous datasets with a limited number of cardiac ab-

normalities and thus they can not be used in general set-
tings [2]. In an attempt to promote the further develop-
ment of robust automatic ECG classification, the Phys-
ioNet/CinC Challenge 2020 provided data from a wide
range of sources with various cardiac abnormalities [2].
Many participants of this challenge employed deep neu-
ral networks (DNN) for 12-lead ECG classification into
twenty seven categories [3–5]. In one of studies, resid-
ual convolutional neural network was developed to clas-
sify clinical cardiac abnormalities from 12-lead ECGs [3].
Additionally, two residual neural network modules with
squeeze-and-excitation blocks to classify the ECG signals
are developed in one of the method [4]. Another study
incorporated scattering transform of the ECG with deep
residual neural network for the intended classification [5].
One of the participants built a hybrid model for the twenty-
seven class classification utilising the scattering transform
as input to a depthwise separable convolutional network
and a bidirectional long short-term memory network [6].

In this paper, as part of the PhysioNet / CinC Challenge
2021 [7], we developed an multi-label classification model
using the amalgamation of Fourier-Bessel (FB) expansion
of RR-intervals and scattering transform coefficients as in-
put features to the classifier. The scattering transform gen-
erates translation-invariant and deformation-stable repre-
sentations of ECG signals.

The FB coefficients characterizes the heart rate variabil-
ity for various cardiac abnormalities. The amalgamated
features are fed to the Gated recurrent unit based classifier
to classify ECGs into specified twenty-six categories.The
developed system is evaluated using five-fold cross valida-
tion scheme.

2. Methodology

The major steps involved in the proposed methodology
are pre-processing of ECG signals, feature extraction, and
multi label classification. The overall system design is
shown in Figure 1 and the details of each involved step
is described below.
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Figure 1. Proposed methodology.

2.1. Data

This study is validated using the PhysioNet/CinC Chal-
lenge 2021 dataset. This dataset comprises of eight differ-
ent databases which are collected from across the world.
Each database contained 12-lead ECG recordings and their
annotations in terms of SNOMED CT codes [7]. There are
133 labeled abnormalities in total, out of which 30 are in-
cluded in the final scoring metrics. The complete dataset
comprises of 88253 12-lead ECG records which are sam-
pled at either 250 Hz or 500 Hz or 1000 Hz frequency.

2.2. Pre-Processing

The data pre-processing step includes the various data
processing operations such as re-sampling, filtering, and
noise cancellation applied on whole raw ECG records. Ini-
tially, the entire data set was examined in terms of sam-
pling frequency and all the ECG signal were re-sampled to
500 Hz to maintain the uniformity with respect to sampling
frequencies. A Butterworth band pass filter with cut-off
frequency of 0.5 Hz and 35 Hz is used to remove base-
line wander and high-frequency noise from the re-sampled
ECG signals. Further, a noisy segment identification and
removal method is applied to remove the noisy segments.
This method utilizes the idea of energy thresholding over
the spectrogram of a ECG record. Based on the threshold,
the noisy segment is identified and removed from the ECG

record. [8]. Prior to feature extraction, only ten seconds
initial segments of the data are considered in order to main-
tain the uniform length for each ECG records. This choice
of length complies with the fact that most of the records in
the dataset are of 10 seconds and above in length.

2.3. Feature Extraction

The Proposed methodology focuses on fusion of two
different feature extraction strategies to capture the heart
rate variability and the morphological information applied
separately on the processed ECG. In one of the strategy, FB
expansion is applied on the RR interval sequence to yield
the related coefficients in order to capture the pathological
information associated with the heart rate variability. In the
another strategy, time-frequency domain features are ob-
tained from the processed ECG signal by employing scat-
tering transform [9].

2.3.1. Fourier-Bessel Expansion

The analysis and synthesis of arbitrary signals using FB
expansion involves the use of the Bessel functions as the
basis. The decaying nature of the Bessel basis function
has been proven useful to extract the information from the
RR interval sequences[10]. Therefore, the FB coefficients
for the RR interval sequence are computed and considered
as one set of features. The RR sequences are generated by
applying QRS detection on lead II. In general, the FB co-
efficients can be obtained by using the following equation:

χm =
2
∫ a

0
tR(t)Jn (λmt) dt

a2 [Jn+1 (λma)]
2 (1)

where, R(t) is the RR interval sequence, Jn and Jn+1

are the Bessel functions of first kind, λm are the roots of
Jn(t) = 0, m is a integer value and a is range of time t.

2.3.2. Scattering Transform

The time-frequency domain features are obtained from
the processed ECG signal by employing scattering trans-
form [9]. The scattering transform is capable to produce a
stable and translation invariant signal representation. Fur-
ther this representation has the discriminating potential
among the classes making it suitable for the feature ex-
traction task intended for classification.

The scattering transform is obtained by cascading the
wavelet transform with a nonlinear modulus and averag-
ing operators [9]. The first layer scattering coefficients are
obtained using wavelet transform of signal s(t) given as:

χ1
s(t, j1) = js(t) � ψj1

(t)j � φ(t), j1 = 1, . . . , λ1 (2)

where j1 and λ1 denotes different scales and orientations
for the first layer. The scaling function φ(t) is a low



pass filer and ψ(t) is band pass filter for higher frequency
bands. Further to make the representation translation in-
variant modulus and averaging operation are carried out.
The scaling function is considered as an averaging opera-
tion. Further to recover the lost high frequency information
the other set of wavelets ψ(t) are used. Thus the second
layer coefficients can be expressed as:

χ2
s(t, j1, j2) = ks(t) � ψj1(t) j�ψj2(t)j � φ(t). (3)

This process of layer creation is continued up to themth

layer in order to make the representation invariant and to
recover the deleted information. The mth layer coeffi-
cients are given as:

χm
s (t, j1, j2, .., jm) = jjjs(t) � ψj1(t)j � ψj2(t)j...

�ψjm(t)j � φ(t), ji 2 f0, . . . , λig, i 2 f1, 2, . . . ,mg
(4)

The scattering transform coefficients in terms of number of
orientations by number of scales are obtained by concate-
nating the outputs of each layer.

Finally, averaging the scattering transform coefficients
thus obtained forms the other feature set used in this study.
To build the entire feature set, both the FB and scattering
transform features are combined.

2.4. Classification

In this study, a multi-label classification schemes is de-
veloped for classification of ECGs. One multi-label classi-
fier is designed for each of the five different specified ECG
lead combinations. The deployed multi-label classifier ar-
chitecture includes the GRU layer, max pooling layer, fully
connect layer and a sigmoid layer as shown in the Figure
2. The concatenated features are fed as input to the said
network with batch size of 1000 and learning rate of 0.01.
The network is trained for 70 epochs. The hidden units of
100 is set for the GRU layer. GRU layer is like long short-
term memory layer with no output gate but there is a forget
gate and less number of parameters. GRU is able to learn
time step dependencies within time series data. The input
weights and the recurrent weights of the GRU layer are
initialised using Glorot initialisation. Whereas the weights
of the fully connected layer are initialised using Gaussian
distribution with zero mean and standard deviation of 0.01.
For the each of the multi-label classifier’s training, 80% of
the data was chosen at random, with records containing
at least one label from the twenty-six scored labels. The
generated models were then tested on the 20% of the vali-
dation data as per five-fold cross-validation scheme.

3. Results and Discussion

The five-fold cross-validation results using the training
data for the different lead combinations are presented in
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Figure 2. Multi-label Classifier Architecture

Table 1. The performance measures considered to vali-
date the study are: accuracy, F-measure, area under the
receiver operating characteristic (AUROC), area under the
precision-recall curve (AUPRC), and the challenge scoring
metric [7]. The challenge scoring metric used for scoring
is designed in such a way that correct diagnoses will get
full credit whereas misdiagnoses with similar risks or out-
comes as the true diagnosis will get partial credit [7].

Unfortunately, our official phase entry failed because the
training time for the twelve-lead setup exceeded the given
time limit. Thus, we were unable to obtain the challenge
scoring metric scores on the hidden test set. Therefore,
average results of the five-fold cross-validation performed
on the publicly available training data of the challenge are
shown in Table 1. The feature extraction strategies utilised
in this study were successful in distinguishing various ab-
normalities present in the ECG signal. The proposed algo-
rithm gives satisfactory performance on all lead combina-
tions, as observed from Table 1. It is noteworthy that all
the performance measures for the two-lead combinations
is the highest among all the lead combinations. Further it
is observed that, with the fixed model parameters the per-
formance improves significantly as the number of leads in
the lead combinations decreases. The results in terms of
the challenge scoring metric of each fold for all lead com-
binations is shown in Figure 3.

4. Conclusion

In this study, we have devised an efficient feature extrac-
tion scheme for ECG classification incorporating the FB
expansion and scattering transform. The results demon-



Table 1. Performance measures for all lead combinations.

Lead Accuracy F-measure AUROC AUPRC Challenge
combination Scoring Metric
Twelve-lead 0.3498 0.2606 0.6298 0.1798 0.4038
Six-lead 0.3676 0.2900 0.6364 0.1938 0.4270
Four-lead 0.3788 0.2874 0.6358 0.1964 0.4296
Three-lead 0.3422 0.2834 0.6374 0.1884 0.4380
Two-lead 0.3750 0.2968 0.6402 0.2000 0.4482

Figure 3. Five-fold results in terms of challenge scoring
metric.

strates that, the proposed feature extraction strategy and a
multi label classification algorithm provides a competitive
solution for classification of ECGs. The models developed
in this study are not optimal and thus, the optimization of
model parameters and exploration of other feature extrac-
tion techniques can be done in the future work.
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