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Abstract 

Accurate beat classification and alignment is 
fundamental to any signal averaging method. The 
objective of this study was to investigate the accuracy of 
different beat classification and alignment methods, and 
the impact of pre-processing methods on these algorithms.   

Experimental data came from a human-shaped torso 
tank, with 256 body surface ECG recorded during sinus 
rhythm (SR) and left ventricular pacing (LVP) (n=4). 
“Gold-standard” classification and alignment were 
defined from recorded cardiac electrograms. Six different 
methods of baseline drift removal (BDR) were applied to 
ECG. Subsequently, 3 different beat segmentation methods 
were used to extract QRS complexes and align them, and 
four different beat classification methods.   

Pre-processing methods had only a small impact on 
beat classification and alignment compared to the 
segmentation and classification methods themselves. 
However, baseline drift removal over the whole QRS does 
appears to be important in providing the most accurate 
final averaged beat. 
 

 
1. Introduction 

Signal averaging is a useful technique to reduce or 
eliminate noise without the potentially distorting effects of 
filtering on the signal waveform. Signal averaging has 
previously been used to filter body surface signals prior to 
application of non-invasive electrocardiographic imaging 
(ECGI) as a means to reduce high-frequency noise [1,2]. 
However, in our recent study evaluating the effects of 

different filtering methods on ECGI reconstructions, we 
found signal averaging was only beneficial in certain cases, 
and could actually be detrimental to the reconstruction 
compared to not filtering the signal at all [2].  We suspect 
these different results were due to beat alignment issues; 
that is detrimental results occurred when alignment was 
poor resulting in QRS deformation in the ECG.  

We hypothesize that if the optimal signal averaging 
approach can be determined, it will provide the best 
filtering tool to use for ECGI with stable rhythms. As such 
the following study investigates the accuracy of different 
beat segmentation, alignment and classification methods. 
As this process may be improved or hindered by any signal 
pre-processing used, in particular by baseline drift 
removal, 6 different methods of baseline drift removal 
were also investigated. 
 
2. Methods 

2.1. Experimental Data 

The experimental protocol used to obtain this data set 
has previously been described in [3]. An excised pig heart 
(35 kg) was perfused in Langendorff mode. An epicardial 
electrode sock (108 electrodes) was attached to the 
ventricles and bipolar pacing leads to the LV freewall. The 
heart was transferred to a human-shaped torso tank filled 
with an electrolytic solution (conductivity of 500 Ω-cm) 
and with 256 electrodes embedded in the surface. Tank and 
sock signals were recorded simultaneously (BioSemi, the 
Netherlands) for two 2-minute episodes of sinus rhythm 
and left ventricular (LV) pacing (n=4).  



2.2. Signal Processing Methods 

 
Fig 1. The four steps of signal processing for raw ECG. 
 
Fig 1 outlines the four steps of signal processing used. First 
baseline drift was removed. A template “goal” QRS-
complex was used to segment and align the beats. The 
segmented beats were then classified as “goal” or “not-
goal” and finally the identified “goal” beats were averaged.  

 
2.2.1 Step 1: Baseline Drift Removal 

Six different methods of baseline drift removal (BDR) 
were applied: 
1. Simple: A naive approach where the mean over a 20 ms 

window during the isoelectric period pre-QRS was 
subtracted from each beat. 

2. Wavelet-based: A wavelet bandpass filter with the 
decomposition performed over 20 wavelets and the 
filtering within 0.5-150 Hz band. 

3. Savitzky-Golay: A Savitzky-Golay FIR smoothing filter 
was applied to the data with a polynomial order of 3 and 
a frame length of 3000 ms. 

4. Spline-based: A spline-based method using predefined 
expected isoelectric points for computation of the zero 
line by fitting the isoelectric line with a cubic function. 

5. Butterworth High Pass Filter: IIR high pass filters with 
filter order 5 at cut-off frequency of 0.5 Hz.  

6. Beat-Box: A moving average filter with a width the 
approximate cycle length to produce an estimate of the 
baseline that is subtracted from the raw recording.  

 
2.2.2 Step 2: Segmentation and Alignment 

Three different methods were used to segment all QRS 
complexes throughout the signal and align them with the 
template beat.  
1. R-peaks: R-peaks were identified in a selected lead by 

Pan-Tompkins method and the beat using a window 
around the R-peak. 

2. PFEIFER:  A time-shift between the template and a the 
ECG signals was used. The lag corresponding to the 
peaks in cross-correlation (over select electrodes) was 
used to segment the beats, and determine alignment.  

3. PCA-based [4]: Principal component analysis (PCA) 

was applied to the ECG and the first PC used to define 
the virtual lead and virtual template. The time-shift 
approach was used on the virtual signals. 

 
2.2.3 Step 3: Beat Classification 

For the Pfeifer and PCA methods, classification of the QRS 
complexes that corresponded to the “goal” template QRS 
was performed during segmentation, by identifying all 
beats with a cross-correlation above threshold as “goal” 
(threshold of 0.9 for the PCA method and 0.95 for Pfeifer). 
For beats aligned using the R-peaks method, classification 
was determined using two different methods:  
4. K-means: Segmented beats were clustered to 10 

clusters according to the criterion of the minimal L2 
norm of the difference between the beats in the cluster. 

5. Neural Network [5]:  Finds clusters within data based 
on the principle of competitive learning. Each beat 
was classified into one of 10 clusters based on the 
similarity between this beat and the beats in that 
cluster. 

  
2.2.4 Step 4: Averaging 

Beat averaging was performed for each method using all 
beats identified by the classification algorithms as “goal”, 
taking the mean as the average. 
 
2.2. Evaluation Criteria 

“Gold-standard” beats alignment was obtained by 
computing the AT maps for all beats, and aligning them 
using the minimum medium absolute error over all 
electrodes. “Gold standard” fiducials marking the start of 
each beat was extracted from this alignment and used to 
evaluate alignment error with the mean absolute error (ms).  

 
Fig 2. Example of 2 sock electrodes and the beats 

identified as “goal”, “near goal” or “PVC”. 
 



 “Gold-standard” beat classification were semi-
automatically obtained from EGMs. Beats were classified 
as “goal” (the most common QRS seen), “near-goal” (close 
to goal but with regional differences in EGMs due to 
physiological variability) or “not-goal” (e.g. PVCs), as 
demonstrated in Fig. 2. Classification of beats as “goal” 
was evaluated using the sensitivity and specificity for each 
method.  

To quantify the accuracy of averaged beats, the 
difference between the template beat and the final averaged 
beat was computed. From this residual, the signal-to-noise 
(SNR) ratio, to quantify any remaining QRS (a perfect 
averaged beat will results in pure noise in the residual and 
SNR of <1dB).  
 
3. Results 

The LVP and SR sequences were composed of a total 
582 and 419 “goal”, 5 and 8 “near-goal” and 7 and 15 “not-
goal” QRS-complexes respectively.  

 
3.1.  Alignment 

 
Fig. 3 presents the comparison in mean absolute alignment 
error (ms) between the different segmentation and baseline 
drift removal methods for each ECG recording.  
 

Overall, the alignment of beats for most methods was 
good (<5 ms error; Fig 3).  The biggest differences in 
accuracy came from the different segmentation method 
used (p<0.01), rather than the baseline removal method 
(p=0.16), with PCA producing a near perfect alignment 
(<0.5 ms) and the most consistent results for this data.  

For Pfeifer, the baseline removal method had a large 
impact on alignment with the simple method providing the 
most accurate results similar to PCA (p<0.0001). This may 
be due to the other methods deforming the QRST and 
impacting alignment through correlation of these 
waveforms. For the PCA and R-peaks on the other-hand, 
baseline drift removal had no major impact on the 
alignment.   

 
3.2. Classification 

The PCA, K-means and Neural Network demonstrated 
an excellent sensitivity for all signals (>0.99, >0.96 and 

>0.95 respectively), with little difference between the 
baseline drift removal methods (Fig 4). Pfeifer had a good 
sensitivity for LV pacing signals (>0.96) for all baseline 

drift removal methods except the cubic spline. For sinus 
rhythm however, around 40% of the “goal” QRS 
complexes were not detected with Pfeifer.  

For specificity on the other hand, only the PCA showed 
a relatively good ability to detect “not-goal” beats with 
values 0.8 for all signal types and little difference between 
baseline drift removal methods. Kmeans likewise 
performed well for both sinus rhythm and 1 of the 2 LV 
pacing signals except with simple baseline drift removal.  
The Neural Networks performed well for 1 sinus rhythm 
signal with little impact from baseline drift removal. 
Finally, Pfeifer performed the worst, with nearly all signals 
below 0.8 except for 1 sinus rhythm signal with simple or 
Butterworth baseline drift removal.  

 

 
Fig. 4 presents the sensitivity and specificity for the 
detection of “goal” QRS complexes for the different 
classification and baseline drift removal methods for each 
ECG recording.  
 
3.2.  Averaging 

An example for a single lead during sinus rhythm is 
presented in Fig 5 for each classification algorithm after  
baseline drift removal. The impact of alignment error can 
be seen in the Pfeifer aligned beats, as there is clearly some 
remaining QRS in the the residual for the Butterworth and 
Wavelet cases. It also appears that an alignment error under 
4 ms coupled with a low number of false positive “goal” 
beats is sufficient to remove this remaining QRS from the 
signal, as is seen in the remaining examples the residual 
appears to be pure noise.  

As expected, Pfeifer produced the highest SNR with 



both alignment and classification results worse than the 
other methods. Interestingly, despite having a poor 
specificity, the simple method of baseline drift removal 
produced one of the best SNR. This method also had a near 
perfect alignment (error <0.5 ms), indicating that including 
a small number of “non-goal” beats does not substantially 
impact the final QRS morphology.  

 

 
Fig 6 presents the signal-to-noise (SNR) ratio of the 

difference between the signal averaged and template beat. 
 
The SNR for PCA, K-means and the Neural Network  

were similar for most signals despite differences in 
alignment error. This suggests 1 ms error is a good 
threshold to aim for in order to minimize the impact on the 
final QRS morphology. Furthermore for the PCA, although 
alignment error was the same for all baseline drift removal 
methods, there was a notable difference in the SNR they 
each produced suggesting baseline drift removal may alter 
the QRS waveform morphologies in some way. 
Interestingly, the simple method, which does not affect the 
QRS morphology, produced one of the highest SNR 
meaning it is important to remove baseline drift over the 
whole QRS, and not just reset the iso-electric line.  

 
4. Conclusions 

Pre-processing methods had only a small impact on beat 
classification and alignment compared to the methods of 

signal averaging themselves. The PCA produced the most 
accurate alignment and classification.  

Evaluation of the residual between the final averaged 
beat and the template beat indicated that specificity of the 
beat classification was less important than beat alignment. 
However, this is likely only the case in this study where the 
number of “not-goal” beats that could be detected was very 
small (2.1-5.5% of the total beats). It was further found that 
an alignment error <1 ms was sufficient to reduce the SNR 
of the residual to within acceptable levels, and that is 
important to remove baseline drift over the whole QRS, 
and not just reset the iso-electric line to produce an 
accurate final averaged beat.  

The results should be interpreted in light of the 
limitations. Namely, only a small data set from a single 
experimental set up was used. We are currently expanding 
our analysis to include more data sets, and use this data to 
perform ECGI and assess the impact on reconstructions.  
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Fig 5. Examples of a single ECG in sinus rhythm for each classification algorithm (columns) after 
A) simple, B) butterworth and C) wavelet baseline drift removal. Each plot contains the template beat 
(black), the signal averaged beat (blue) and the difference (residual) between them (red). 
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