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Abstract 

Lately, many health systems accelerated their initiatives 
of advanced remote monitoring systems. Moving to an 
unattended environment requires overcoming patients' 
compliance issues and demonstrating the effectiveness of 
remote monitoring technology. Current Early Warning 
Scores detection of deterioration, commonly based on spot 
check EMR data, demonstrates low translational impact 
from one facility to another. In this study we used vitals 
collected passively by a sensor, to build a Machine 
Learning model for timely prediction of deteriorating 
patients, within 24-hours of their transfer to ICU or death. 
Time series features, such as trends and vitals’ variability 
were used in conjunction with age & comorbidity data. 
Evaluating the model yielded an AUROC of 0.81 on data 
from an inpatient setting, and an AUROC of 0.88 on an 
independent test set from a COVID-19 unit. The suggested 
model, based on passive measurement technology, 
performs equally well as models based on EMR that 
include nurse inputs. Applying the model on other acute 
settings (such as a COVID-19 unit) showed similar 
performance, increasing confidence of its robustness and 
transferability. The model performance combined with the 
fact that it does not require human compliance, makes it a 
good candidate for future testing on home settings. 

 
 

1. Introduction 

Lately, healthcare has been shifting larger segments 
towards remote patient monitoring, home hospitalizations 
and unattended settings. This shift raises the importance of 
having Early Warning Scores (EWS) to detect impending 
deterioration and allow timely intervention. However, 
current EWS for detection of deteriorations in adult non-
ICU patients demonstrate low precision (positive 
predictive value (PPV)) [1] and typically have minimal 
impact when translated from one facility to another [2]. 

The common EWS (NEWS, MEWS, ViEWS) are based 
on spot-check EMR data. Other scores, use a combination 
of continuous monitoring with wearables and intermittent 

manual monitoring by unit staff [3].  These manually 
collected data points introduce a nurse-bias (human factor) 
into the data and the inferred model. This creates a bias in 
the quality and quantity of the vitals collected and affects 
the model. This bias adversely affects the translational 
performance of the EWS, as the ‘nurse factor’ changes 
between different settings and guidelines. Thus, when the 
model is tested outside of the facility where data originated 
– it performs worse than reported [2]. 

In this work, we hypothesized that by eliminating data 
dependency on the ‘nurse factor’– we may be able to 
establish an EWS that is more objective, and less 
dependent on a specific setting, e.g., specific nurse-to-
patient ratio, or specific locations where nurses follow 
different guidelines. 

We used continuous and contact free monitoring 
systems to record vital signs (EarlySense LTD), and 
patients' data from a single site, in order to build a model 
based solely on objective data. We then tested the 
performance of the model in a completely different setting 
working under different guidelines to test our hypothesis 
that the performance will not vary.  

 
2. Methods 

We developed a machine learning model to predict in-
patient deteriorations that resulted in patient transfer to 
Intensive Care Unit (ICU) or death. Data from the last 24 
hours before an event (transfer to ICU, hospital discharge 
or death) was used for training and tuning, and predictions 
were calculated on an hourly level and evaluated on an 
admission level.  

 
2.1. Data 

A total of 38,502 admissions (26,504 patients, 14,899 
Female, age: 66.6±18.8, and 11,605 Male, age: 65.5 ±17.3, 
mean±SD) collected over a period of 3.5 years from 
Newton Wellesley Hospital (NWH) in Massachusetts, 
USA, were included in the study, of which, 1,118 
admissions ended in a deterioration. Patients were from 
various hospital unit types: Medical-Surgical, Orthopedic, 



Post-operation, and Cardiac units. All patients were 
monitored with the EarlySense (ES) system, based on a 
contact-free piezo-electric sensor, placed under the 
patient’s mattress. The ES monitor continuously tracks 
Respiratory Rate (RR), Heart Rate (HR), motion level, and 
bed occupancy. Additional data including outcome, age, 
and a one-time entry of the patient's comorbidity 
information from the EMR was used. 

The datasets in Table 1 were used to train, tune, and test 
a collection of Gradient Boosting classifiers. Stratified 
random splitting of the NWH data into training (44%), 
validation (22%), and testing (33%) sets was done. In 
addition, we made sure that data from the same admission 
does not appear in more than one dataset. 
 
Table 1. Datasets used to train, tune, and test the model. 

 
Datasets Admissions Deteriorations % 
Training set 17,091 2.9% 
Validation set 8,549 2.7% 
Testing set 12,862 2.9% 
 

2.2. Features 

    Feature selection was done by visually inspecting 
plots of the features over time, in the training set, and 
selecting features that have the best correlation with the 
outcome, while excluding features that were correlated 
with each other. This was done to allow better 
explainability of the model to the end user. A total of 11 
features unique to continuous vitals monitoring were 
selected, and fed into 5 sub-models, with each sub-model 
relying on 3-4 features. Using a small number of features 
per sub-model helped prevent over-fitting, while 
preserving a variety of features.  

The features were based on 10-second resolution data. 

They were calculated every hour with a rolling window 
size of 1-6 hours, depending on the feature. To deal with 
missing data, we set conditions for the minimum time in 
bed and measurements required for a feature to be 
calculated to keep as much data as possible, while 
preserving its quality. In addition, a weighted moving 
average on 4 hours was used on most features to smooth 
feature values and reduce missing data. The features 
included: HR and RR six-hour trends, HR and RR 
variability in last three hours, HR and RR one-hour 
median, irregularity of HR in the last six hours (may be 
related to e.g., arrhythmia), and the percentage of age-
normalized HR or RR exceeding certain thresholds. 

We used age-normalized HR, calculated as:                   
age_normalized_HR = (HR-HRmin)/(HRmax-HRmin), 
with HRmin=40, and HRmax=(220-age). This 
normalization is commonly used in the field of sports [4]. 
Age is an important feature and has a substantial effect on 
vitals. However, with the relatively small sample size 
relative to the various ways "to deteriorate" we chose to 
factor the "age" feature with the vitals. 

 
2.3. Model development  

An overview of the model development process is 
described in figure 1 below, and will be described in the 
current section. 

We performed relabeling of the training set so training 
could be done on more consistent data. As the deterioration 
is a process, during the observed 24-hours some data points 
may include rather stable vitals, and may not suggest 
deterioration. In addition, some negative labels may be a 
result of deteriorations that actually occurred, but were 
treated on time, and therefore may include extreme vitals, 
indicating deteriorations. Instead of giving the same label 
for each hourly calculation of the features, based on 
whether or not the admission ended in deterioration, we 

Figure 1. An overview of the ES model, depicting the model development process.  
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relabeled some of the hourly labels from positive to 
negative and vice versa. This was done by examining the 
cumulative probability distributions of the features on the 
training set with and without deteriorations, and 
identifying thresholds for relabeling (low and high 
percentiles).  

The ES model is comprised of five sub-models, with 
each one focused on a different aspect of vitals: age-
normalized HR and RR above thresholds, age-normalized 
HR and RR below thresholds, HR and RR median and HR 
variability, HR irregular rate, and HR and RR trends. Each 
sub-model was trained separately with a Gradient Boosting 
Classifier. During the training stage we performed a 5-fold 
stratified cross validation, for hyper parameter tuning - 
making sure that there is no bleed-through of subjects 
between the training and the testing folds. Random under-
sampling (1:1) was performed on the train-fold only, to 
help prevent over-fitting due to the unbalanced data.  

Each sub-model produces its own probability prediction 
for a deterioration. The validation set was used to calculate 
several threshold levels on each sub-model's prediction, 
based on a configurable desired specificity. These 
specificity threshold levels allow controlling the overall 
sensitivity/specificity level of the model, and easy tuning 
of the sub-models so the model is optimized for different 
clinical settings and outcomes (e.g., COVID-19, post-acute, 
etc.). The probability of each sub-model was normalized 
(between 0 and 1) by the desired specificity threshold level 
for each sub-model, and the maximum prediction score 
was taken as the total prediction score of the final model. 

An additional adjustment for comorbidities and age was 
then used to adjust the prediction score output of the final 
model, according to the probability of a deterioration, 
given the subject age and Charlson Index (calculated from 
comorbidities) [5]. The probability was calculated based 
on the training set, and hyper-parameter tuning was done 
on the validation set, resulting in a parameter of a=0.75 
giving optimal results for the weight between the final 
prediction score and the Charlson-based adjustment. 

To determine an operating point for the final model, we 
checked different thresholds for the prediction score on the 
validation set, and examined PPV. We chose a point with 
a relatively high PPV and a high enough sensitivity. 
Classification was done on an hourly level, and on a 24-
hour admission level. An admission was marked "positive" 
for deterioration if at least one hour of the last 24 hours was 
marked as "positive". 

 
2.4. Model testing on a separate COVID-19 
dataset  

Before testing the model on separate data from a 
COVID-19 unit, tuning of the model for respiratory 
population from NWH was done. The machine learning 
model was applied to a respiratory validation subset within 

the NWH dataset, choosing only patients with respiratory 
ICD-10 codes. The purpose of this was to optimize the 
model tuning-parameters to patients with respiratory 
symptoms (pre-COVID). We calculated all the 
combinations of sub-models with the specificity threshold 
levels from the regular model, and chose the combination 
with the desired specificity level of the overall model 
performance on the respiratory validation subset. The 
tuned model was then tested on data from a COVID-19 unit 
in Sheba Medical Center (Israel) between April 2020 and 
Sept 2020.  
 
Table 2. Datasets used for tuning the model for respiratory 
population, and testing on a COVID-19 population. 

 
Datasets Admissions Deteriorations % 
Respiratory 
validation subset 

1,110 4.4% 

COVID-19 test set 131 18.3% 
 

3. Results 

As seen in figure 2, visualizing the model predictions 
versus the HR and RR data over time, can follow 
deteriorations and changes in the patient status, and thus 
help with the explainability of the model. 

 

 
 
Figure 2. HR (upper panel), RR (middle panel), and hourly 
EWS (lower panel) for 24 hours before transfer to ICU of 
a 50-year-old patient. The red horizontal line depicts the 
threshold for deterioration classification. The blue vertical 
lines mark the time of transfer to ICU. The model first 
detected deterioration 13 hours before the event. 

 
An evaluation of the model for hourly predictions of 

patients’ deterioration within 24-hours of an event (death, 
transfer to ICU or discharge) yielded an Area under the 
Receiver Operator Curve (AUROC) of 0.81. This is 



comparable to an AUROC of 0.78 reported in the literature 
for an EMR-based a machine learning model with a similar 
population and deterioration criteria [6]. For a specific 
operating point that was chosen, we got sensitivity, 
specificity and PPV of 61%, 84%, and 9%, respectively. 

When evaluated on a set of 131 COVID-19 patients at 
Sheba Medical Center, the suggested model achieved an 
AUROC of 0.88. For a specific operating point that was 
chosen, we got sensitivity, specificity and PPV of %67 , 

%92  and %67 , respectively. 
 
4. Discussion 

The suggested model, developed on data from acute 
settings, based on passive and continuous measurement 
technology, has achieved similar performance to models 
developed on EMR systems that include nurse inputs. 
Applying the model in other acute settings (COVID-19 
unit) showed similar (or better) performance, increasing 
the confidence of its robustness and its transferability to 
other clinical settings. This supports our hypothesis that 
training a model on features based on vitals that were 
automatically measured provides consistency in the 
performance of the model in different settings. 

Our EWS model, based on the ES system presents 
unique advantages relative to EMR-based EWS. These 
include, continuous and objective measurements that are 
not dependent on manual data inputs, such as spot-checks, 
which may vary due to e.g., different guidelines, personnel 
skill level, "white coat" effects, etc. In the home or post-
acute setting this may be especially important as skilled 
personnel is not as available. In addition, the system is 
contact-free and passive, and therefore it does not interrupt 
the daily routine of the subject or require compliance, once 
the sensor is placed under the mattress. These advantages 
suggest that the system may be compatible to home and 
post-acute settings. 

Our EWS model presented low PPV for the NWH data. 
This may be related to timely interventions that occurred 
during the course of the deterioration process. This may 
explain why in the COVID19 unit, where some of the care 
was given remotely, the PPV was significantly higher.  
Additionally, some false positive classifications were 
likely related to other deterioration types (e.g., infections, 
fever) that occurred.  

The model used labels based on ICU transfers and 
death. However, in the clinical setting predicting other 
forms of deterioration requiring medical attention may be 
important. The model training was done on relabeled data, 
due to the need to transform the binary output label (of 
transfer to ICU or death) to an hourly label providing 
consistent training data for deterioration predictions. This 
improved the model performance. However, it may have 
added some bias towards deterioration types relating to 
very high or low HR or RR values, which do not 
necessarily result in ICU transfer or death, but may require 

medical attention nonetheless. 
For the model to be more relevant for the home or post-

acute setting, which are compatible with the ES system 
characteristics, adding sub-models relating to longer term 
features (in terms of days) may be relevant. In addition, 
improving the explainability of the model, by including 
vitals plots and explainability features, may help medical 
staff better utilize the model as a decision support system. 
We are currently exploring both of these directions. Future 
tuning and testing the model on post-acute and home 
settings, may help reduce admissions of high-risk 
individuals, and aid in providing prompt interventions, 
with minimal human compliance. 
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