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Abstract

The reliable evaluation of the QRS detection algorithm
requires comparability and reproducibility. Although it
is commonly accepted to test QRS detection accuracy by
standard binary classification parameters, much less at-
tention is paid to the temporal accuracy of the detector.
A variety of temporal tolerance values are used in the
literature for performance evaluation of QRS detection,
ranging from 60 ms to 160 ms, which sometimes result in
comparison of algorithms with different temporal resolu-
tions. This paper addresses a problem of the dependence
of the accuracy of QRS detection algorithms represented
by detection error rate, sensitivity, and positive predic-
tivity, on the temporal resolution of the detection defined
by Detector Temporal Tolerance (DTT). In this work, the
classification statistics achieved for three state-of-the-art
low complexity algorithms in a broad range of DTT (from
160 ms to 8 ms) for the entire standard MIT-BIH Arrhyth-
mia Database are compared with the performance of the
Pan-Tompkins algorithm. The analysis shows that along
with decreasing value of DTT, the classification statistics
for R-peak detection algorithms deteriorate, while the de-
terioration rate is characteristic of a given algorithm. In
addition, the algorithms change their positions in the de-
tection accuracy ranking with changing DTT value. The
performed analyses proved that DTT is an integral param-
eter of ORS complex detection that determines the repro-
ducibility of test results and fair comparative study.

1. Introduction

The QRS complex detection is a very active re-
search area extensively studied over the last decades
with more than 500 papers reported per annum [1].
The accuracy of QRS detection is evaluated conven-
tionally by the binary classification parameters such as
Sensitivity S =TP/(TP + FN), Positive Predictivity

+P = TP / (TP + FP) and Detection Error Rate
DER = (FP+ FN)/(TB), where TP is the number
of correctly detected R-peaks (True Positive), F'N is the
number of omitted R-peaks (False Negative), F'P is the
number of incidences that were wrongly classified as R-
peaks (False Positive), and T'B is a number of annotated
R-peaks in a database (Total Beats). In QRS detection, the
number of incidences that are not annotated as R-peaks is
not considered, so 7'V (True Negative) is undefined.

Most research works on QRS detection compete to gain
top statistics for these metrics. At the same time, much
lower attention is paid to the temporal accuracy of the de-
tector [2]. Meanwhile, the numerical values of binary clas-
sification parameters depend on the adopted temporal tol-
erance of QRS detection. Let us define the Detector Tem-
poral Tolerance (DT'T’) as the maximum allowed time dif-
ference between the peaks fiducial points detected by the
algorithm (¢ p) and the corresponding annotations from the
reference database (f4). The R-peak detected anywhere
within the tolerance window of 2DT'T length centered at
t 4 is classified as correct (1T P):

TP: tp € ta+DTT (1)

The higher the DT'T, the better the numerical results
of the aforementioned accuracy metrics. However, the R-
peak detected within a long tolerance window that is dis-
tant from its reference annotation, is still classified as cor-
rect (T'P), although it might even be located in the inter-
section of tolerance windows of two adjacent QRS com-
plexes (Fig. 1). Therefore, for a reliable classification, the
tolerance window should not be longer than the duration
of QRS complex (compare Fig. 2). Otherwise, it is possi-
ble that the detected R-peaks that fall within the window
2DTT and are treated as T P, should contribute to both
F'P (the wrong sample was detected as R-peak) and FFN
(the right R-peak was not detected) at the same time.

Inaccurate R-peak detection stems from the finite pre-
cision of detection algorithms, noise, and abnormal heart-
beats. For example, some algorithms classify as the R-
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Figure 1. Excerpt from 205 ECG record of the MIT-

BIH Arrhythmia Database. The tolerance windows defined
around adjacent R-peak annotations overlap.
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Figure 2. Excerpt from 215 ECG record of the MIT-

BIH Arrhythmia Database containing a QRS complex that
lasts for 67 ms (24 samples), while the tolerance window
150 ms (ANSI recommendation). A potential 7P detec-
tion can be distant from the actual QRS complex.

peak the first local maximum in the QRS searching win-
dow, while the others consider the same for the absolute
extremum. Both methods may imply unnoticed false de-
tections. Additionally, the filtering operations applied at
preprocessing stage introduce extra lag defined by the fil-
ter group delay [2].

Nevertheless, an accurate R-peak temporal localization
is crucial for subsequent ECG signal analysis, since any
advanced test is based on accurate R-peak detection and
a possible error in this respect is further propagated. For
example, the inaccurate R-peak localization affects not
only the assessment of heart rate (HR) and, consequently,
the heart rate variability (HRV) but also ML-based analy-
sis. In the case of the latter, the surrounding of the wrongly
identified QRS complex, which is an entirely different ex-
cerpt of the ECG signal, is the basis of the calculations
of morphological parameters. Moreover, prominent accu-
racy statistics do not necessarily translate into the diagnos-
tic relevance of such R-peak detectors. From the clinical
point of view, the ability of the algorithm to recognize nor-

mal R-peaks is inadequate, as it is more important to cor-
rectly diagnose pathological phenomena. These are cer-
tainly present less frequently in ECG records and there-
fore may not significantly affect the classification statistics.
However, the correctness of their interpretation depends on
the temporal accuracy of R-peak detectors, and as proved
in [2], it is for abnormal beats that the largest difference
|ta — tp| indeed occurs.

A variety of DTT values have been chosen in the lit-
erature for performance evaluation of QRS detection algo-
rithms: 60 ms [3], 75 ms [4], 100 ms [5], 150 ms [6,7] and
160 ms [8]. But, even more frequently, this parameter is
not explicitly provided, e.g. [9—11], which may result in a
comparison of algorithms with a different temporal resolu-
tions of the detection. On the one hand, the ANSI recom-
mendation defines a value of 150 ms as temporal tolerance
for QRS detection [12]. Its objective is to provide a cri-
terion for algorithms comparison. However, the value of
150 ms is rather a moderate requirement. As seen in (Fig.
1), which is an exemplary excerpt of ECG signal from the
MIT-BIH Arrhythmia database, the tolerance windows for
two adjacent QRS complexes overlap. On the other hand,
for HRV analysis, the expected temporal precision is in the
range of a few milliseconds [13—15]. This value is more
than an order of magnitude lower than ANSI recommenda-
tion and DT'T reported in the majority of research papers
on QRS detection [3-8].

Given the aforementioned incoherence regarding DT'T’,
the aim of this work is to examine how sensitive the QRS
detection algorithms are to D'T"T. For this reason, we have
performed an experiment in which the temporal tolerance
is an input parameter of QRS detection and the outputs are
the classification metrics TP, TN, F'N.

2. Experiment specification

The algorithms selected to examine the sensitivity of
QRS detection accuracy to DT'T" have been designed for
real-time operation. The Pan-Tompkins algorithm [16]
was chosen as it is a key reference in QRS detection. For
the sake of this research, its simplified version with pub-
licly available source code was used [17]. The other se-
lected algorithms [6-8] belong to the category of low com-
putational complexity and high energy efficiency methods.
Here, these were implemented in Python based on their
descriptions provided in the original papers.

The algorithms [7, 8, 16] work along with similar subse-
quent signal processing steps: filtering of the ECG signal,
feature signal determination, and designation of heartbeat
fiducial points in QRS complex with adaptive threshold-
ing of the feature signal. However, the Pan-Tompkins al-
gorithm has more elaborate input signal filtering, employs
more numerical operations, and uses additional resources
for recovering possible missed R-peaks in the search back



procedure.

The operation of [6] is different since it uses the level-
crossing sampling [18] that provides information on ECG
local extrema. These extrema are subsequently classified
as either R-peak or noise peak based on peak width with
thresholds that are adjusted to input signal properties.

To provide comprehensive analysis, the algorithms have
been tested for the entire standard MIT-BIH Arrhythmia
Database that comprises 48 ECG recordings lasting 30
minutes each, acquired with sampling frequency equal to
360 Hz and with 11-bit resolution covering 10 mV range,
having T'B=109 494 [19,20]. This database is especially
dedicated to the QRS detection test as it constitutes a good
mixture of normal and pathological R-peaks with various
morphology, as well as noise artifacts challenging the de-
tection process.

3. Test results

We conducted an experiment to learn how the afore-
mentioned accuracy metrics (P, S, DER) change with
decreasing DT'T" for selected algorithms. These results
are presented in detail in Table 1, for DT'T" varying from
163.89 ms to 8.33 ms with a step equal to 11.12 ms (4 sam-
ples). In order to visualize the observed dependencies, the
DER is also presented as the function of D77 in Fig. 3.

As expected, along with decreasing DTT (improving
the detector temporal resolution), the statistics for each
algorithm gradually deteriorate. For DTT = 152.78 ms,
which is close to ANSI recommendation, DER ranges
between 1% [7, 8, 16] and around 2% [6], and for
DTT =108.33 ms, DER is still below 3% for all tested
algorithms. With further reduction of DT'T" until 60 ms,
DER increases up to 6% for all except the Pan-Tompkins
algorithm [16]. For high temporal resolution (low DTT),
DER may exceed 100%, which represents an extreme
case when the number of errors (F'N and F'P) is higher
than the number of R-peaks annotated in the database.

The deterioration rate along with decreasing D11 is
an individual characteristic of a given algorithm. Both [6]
and [7] methods experience slight steadily performance
decline for the whole evaluated DTT range. While the
other two [8, 16] demonstrate dramatic drops at certain
values of DTT. For the Pan-Tompkins algorithm [16],
a sharp increase of DER occurs for a relatively high
DTT equal to 108 ms. But in this particular case, it may
be a consequence of original method simplification [17].
Consequently, which is worth noting, particular algorithms
change their position in the accuracy ranking with DTT
varying from 60 ms to 160 ms (compare the bold values of
DER scores in Table 1 and Fig. 3).

The natural conclusion from the conducted analysis is
that the mere provision of the algorithm statistics (+P,
S, DER), without specifying the DT'T for which they
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Figure 3. Comparison of evaluated QRS detection algo-

rithms in terms of DE R presented as a function of DT'T'.

For a better visibility, the selected fragment of the plot is

zoomed.

were determined, precludes a reliable assessment of the
QRS detection performance, as well as reproducibility of
the test results. Furthermore, a lack of DT'T" specification
makes a fair comparative performance analysis between al-
gorithms impossible.

4. Conclusion

This paper addresses a problem of the sensitivity of
the accuracy of QRS detection algorithms to the Detector
Temporal Tolerance. The results achieved for three state-
of-the-art low complexity algorithms in a broad range of
DTT (from 160 ms to 8 ms) have been compared with
each other and with the Pan-Tompkins algorithm which is
a commonly accepted reference.

As the DT'T value decreases, the classification statis-
tics for R-peak detection algorithms deteriorate, while this
deterioration rate is an individual characteristic of a given
algorithm. Some algorithms experience graceful degrada-
tion, while others suffer an avalanche-like drop for partic-
ular DT'T values. Moreover, the algorithms change posi-
tions in the detection accuracy ranking in various intervals
of DTT.

The performed analyses proved that DT'T" is an inte-
gral parameter of QRS complex detection algorithms that
determines the reproducibility of test results and fair com-
parative study.
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Table 1. Comparison of algorithms performance (+ P [%],
S [%], DER [%]) under increasing DT'T expressed in
[ms] and number of samples. The best method in terms of

DER for particular DT'T' is bold.

DTT [ms]
(samples) [3] (6] [16] [7]
833 +P 22.15 8580 1335 80.68
3) S 2221 8597 1336 8038
DER 155.86 2825 173.35 38.88
19.44 +P 23.99 91.01 13.86 83.13
7 S 2406 91.19 1387 82.82
DER 152.16 17.81 17234 33.98
30.56  +P 31.04 9434 1557 88.61
(1) s 3113 9453 1558 88.28
DER 138.03 11.14 16891 23.07
41.67 +P 9431 9592 4026 92.65
(15) S 9458 96.11 4029 92.30
DER 11.13 797 119.50 15.02
5278 +P 97.44 9758 5222 96.62
(19) S 97.71 9778 5226 96.26
DER 485 4.65 9555 7.10
63.89 +P 97.68 98.14 5478 97.43
23) S 97.95 9833  54.82 97.07
DER 438 354 9044 549
75.00 +P 98.02 9831 57.56 98.70
Q7 S 98.29 98.51 57.60 98.33
DER 370 3.19 8488 297
86.11 +P 98.57 9842  66.38 99.45
3l S 98.84 98.61 6643 99.08
DER 259 297 6722 147
9722 +P 99.15 9848 9593 99.62
35 S 99.43 98.68 96.00 99.25
DER 142 284 808 113
10833 +P 99.24 98.55  98.51 99.63
(39 S 99.52 98.74  98.58 99.26
DER 125 272 291 110
119.44 +P 99.27 98.60 98.70 99.64
43) S 99.54 9879  98.77 99.27
DER 119 261 253 108
130.56  +P 99.29 98.66 99.03 99.68
@7 s 99.57 98.86  99.11 99.30
DER 114 249 186 1.02
141.67 +P 99.31 98.77 9924 99.68
51 S 99.58 98.97  99.31 99.31
DER 111 227 145 1.00
152.78 +P 9932 98.86  99.37 99.69
(55 S 99.60 99.06 99.45 99.32
DER 108 209 118 1.00
163.89 +P 9934 9892 9947 99.69
(59) S 99.61 99.12  99.54 99.32
DER 105 196 099 0.99
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