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Abstract 

Cardiovascular diseases, the leading cause of death 

and disability, are often underlined by cardiac 

arrhythmias. Cardiac electrophysiology models 

play an increasingly important role in dissecting 

arrhythmogenic mechanisms and improving 

treatments, but high computational costs hinder 

their application. We develop and compare four 

novel deep learning (DL) models to solve the 

Fitzhugh-Nagumo (FN) electrophysiology equations 

efficiently in 0D, 1D and 2D. The training datasets 

were created using numerical solutions of FN 

equations. Physics-informed neural network (PINN) 

was based on the incorporation of FN equations into 

the 𝐿𝑜𝑠𝑠 function, allowing the optimal combination 

of training data with physical constraints. Another 

recurrent NN (RNN) with a mean squared error 

(MSE) loss function was developed as a baseline. 

The DL models were evaluated using the MSE score. 

In 0D and 1D, similar performances were achieved 

for all DL models, with a typical MSE of 10-2. In 2D, 

PINN and RNN succeeded in simulating plane and 

spiral waves with similar MSE of 10-2. Hence, 

PINNs can provide an efficient tool for cardiac 

electrophysiology simulations. 

1. Introduction 

Cardiovascular diseases are a leading cause of 

morbidity and mortality, accounting for over 30% of 

all deaths in recent decades. Mechanisms of such 

diseases are often linked to the occurrence of cardiac 

arrhythmias – common pathologies caused by 

disruptions in the generation or propagation of 

electrical activity in the heart. 

 Several prominent mechanisms contribute to 

arrhythmogenesis, such as disruptions in the 

propagation of cardiac action potentials (APs) by re-

entry – a self-sustaining cardiac rhythm abnormality 

in which the AP propagates in a circuit-like pattern. 

However, the precise spatio-temporal mechanisms 

of most arrhythmias are still poorly understood, and 

the success rate of their treatments remains 

suboptimal [1]. Computational modelling of cardiac 

electrophysiology has emerged as a mathematical 

framework that can incorporate experimental and 

clinical data, dissect the complex mechanisms of 

arrhythmias and improve treatments.  

AP generation and conduction is mathematically 

described using ordinary (ODEs) and partial (PDEs) 

differential equations that are solved numerically. 

However, the application of such complex models is 

hindered by the high computational costs of running 

large-scale simulations for hours and weeks. Hence, 

the models are generally incompatible with the 

clinical timescale and impractical to use in the clinic. 

Deep learning (DL) models have emerged as an 

efficient way to solve ODEs/PDEs and overcome 

the drawbacks from traditional numerical methods. 

Specifically, Physics-Informed Neural Networks 

(PINNs) enable combining precise mathematical 

form of the equations with computational efficiency 

of DL. This work introduces PINNs as a novel DL 

tool for simulating cardiac electrophysiology. 

2. Methods 

Four DL models were developed based on fully 

connected (FCNNs) and recurrent (RNNs) neural 

networks, with an additional PINN implementation, 

to provide solutions to the Fitzhugh-Nagumo (FN) 

equations. The latter are the simplest equations that 

can simulate AP propagation, both in normal and 

arrhythmic conditions. FN equations were first 

solved numerically in 0D (ODE), 1D and 2D (PDE), 

and the solutions were then used for training and 

evaluation of the DL models. The trained DL models 

were applied for fast simulations of the respective 

0D, 1D and 2D electrophysiology patterns. 

2.1. Training and Testing Data 

The training and test datasets were generated based 

on numerical solutions of the FN equations using the 

standard, explicit finite-difference methods with the 

time step ∆𝑡 = 0.01 and the space step ∆𝑥 = 0.3. All 

simulations were performed over T = 100 seconds. 

For 0D, 1D and 2D DL models, three separate 

datasets of Tx1, Tx100 and Tx10x10 pixels were 

generated. Each of the three datasets included a 

single AP and several periodic APs; the 2D dataset 

also included a re-entrant spiral wave. 

The 0D case corresponds to the evolution of the 

transmembrane potential in one point of space, 

mimicking one cardiac cell. The 1D corresponds to 



a myocardial cable along which APs propagate. The 

2D case describes the propagation of APs over a 

myocardial tissue; the spiral wave in this case were 

initiated using the standard cross-field protocol.  

To accelerate the training of each network, all 

datasets were down-sampled 5 times in space in 

time, with the essential AP properties preserved.  

2.2. Neural Networks Architecture  

PINNs are a class of neural networks (NNs) that 

incorporate the underlying physical laws of a given 

task into the NN’s loss function. This enables 

efficient computations of initial/boundary value 

problems for ODEs/PDEs with less training data 

than conventional NNs. Additionally, PINNs make 

use of automatic differentiation to rewrite the 

differential equations used to model a system as the 

minimisation of a residual [2], [3].  

Thus, FN equations [4] can be defined as: 
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where 𝑢𝑡ℎ = 0.1 is threshold of the fast sodium 

current, 𝜀 = 0.02 is the control parameter of the 

relative dynamics between 𝑢 (voltage) and 𝑛 (resting 

variable), and 𝐷 = 0.5 is the diffusion coefficient; 

other constants were set as 𝑘 = 8.0 and 𝑔 = 5.0.   

PINNs are trained to minimise the hybrid loss 

function, 𝐿𝑜𝑠𝑠, which ensures the learning of known 

physical laws. 𝐿𝑜𝑠𝑠 accounts for two main terms: 

• Agreement with the training data using Mean 

Squared Error: 𝑀𝑆𝐸�̃� + 𝑀𝑆𝐸𝑁; 

• Consistency with the physical laws of the 

system, residuals: 𝑀𝑆𝐸𝑅_𝑈 + 𝑀𝑆𝐸𝑅_𝑁; and 

boundary and initial value conditions: 

𝑀𝑆𝐸𝐵𝐶 + 𝑀𝑆𝐸𝐼𝐶 . 

Mathematically, this can be expressed as follows: 

𝐿𝑜𝑠𝑠 =  𝑀𝑆𝐸𝑈+𝑁 + 𝑀𝑆𝐸𝑅 + 𝑀𝑆𝐸𝐵𝐶 + 𝑀𝑆𝐸𝐼𝐶   (2)                                                                 
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𝑀𝑆𝐸𝑅 =  𝑀𝑆𝐸[𝑅(𝑡, �̃�, �̃� )]                                     (4)  

𝑀𝑆𝐸𝐼𝐶 =  𝑀𝑆𝐸[�̃�(0, 𝑥, 𝑦), 𝑢𝑡𝑟𝑢𝑒(0, 𝑥, 𝑦)] +
𝑀𝑆𝐸[�̃�(0, 𝑥, 𝑦), 𝑛𝑡𝑟𝑢𝑒(0, 𝑥, 𝑦)]                              (5) 

𝑀𝑆𝐸𝐵𝐶 =  𝑀𝑆𝐸[�̃�(𝑡, 0, 𝑦), 𝑢𝑡𝑟𝑢𝑒(𝑡, 𝑑𝑥, 𝑦)] +
𝑀𝑆𝐸[�̃�(𝑡, 𝑥𝑁 , 𝑦), 𝑢𝑡𝑟𝑢𝑒(𝑡, 𝑥𝑁−1, 𝑦)] +
𝑀𝑆𝐸[�̃�(𝑡, 𝑥, 0), 𝑢𝑡𝑟𝑢𝑒(𝑡, 𝑥, 𝑑𝑦)] +
𝑀𝑆𝐸[�̃�(𝑡, 𝑥, 𝑦𝑁), 𝑢𝑡𝑟𝑢𝑒(𝑡, 𝑥, 𝑦𝑁−1)]                        (6) 

The custom loss function, 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑈, designed 

for the surrogate PINN is inspired by the finite-

difference methods: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑈 = �̃�𝑡+∆𝑡 − �̃�𝑡 − �̃�′∆𝑡                        (7) 

To evaluate the efficiency of PINNs, traditional 

FCNNs and RNNs were constructed to compare 

results obtained using traditional and custom 

Physics-based loss functions, and to evaluate 

differences between the DL models. The Physics-

based FCNN and surrogate RNN incorporated 

Equation 2 and the Equation 7, respectively. Figure 

1 shows architectures of the three models used in this 

study, adapted to include the custom loss functions 

which solves the ODEs and PDEs.  

FCNNs take as inputs the time t and the spatial 

coordinates x and y. The RNNs take as an input an 

array comprised of time and spatial coordinates.  

The number of layers and neurons used is 

adjusted based on the type of NN. To minimise the 

𝐿𝑜𝑠𝑠 and 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑈 functions, adaptive moment 

estimation (ADAM) optimisation was used with a 

learning rate of 10-4 and 2x10-3 for FCNN and RNN, 

respectively. A mixture of ReLU and tanH was used 

as activation functions and Glorot initialisation from 

a normal distribution was used for all weights.  

 

Figure 1. Schematic of PINNs to solve FN 

equations using A) FCNN and B) RNN. The outputs 

are differentiated using an automatic differentiation 

engine to compute the residual. 𝐿𝑜𝑠𝑠 is then 

computed by summing the residual errors, the 

boundary, and initial conditions. 

 

The effectiveness and fidelity of the DL models 

were assessed using the MSE score. 

2.3. Training/Testing Split  

The test set comes from splitting the full datasets 

obtained for T = 100s, where 30% of data were kept 

for testing (time from 50-80s) and the remaining 

data (0-50s and 80-100s) was used for training.  



3. Results  

In general, all DL models reproduced AP and wave 

morphologies in all three dimensions. 

Table 1 summarises the model accuracies. The 

traditional FCNN and RNN were able to reproduce 

single and repeated APs in all dimensions, as well as 

a spiral wave in 2D. RNN outperformed all models 

in simulating single APs in all dimensions.  

The FCNN-based PINN model showed high 

accuracy in reproducing APs in all the examples 

described. The RNN-based surrogate PINN model 

had larger errors than regular RNN, but it still 

produced accurate APs.  

 
 

 

FCNN RNN 

MSE PINN MSE PINN 

0D Single AP: < 4x10-4 

Repeated APs: < 4x10-2 

1D Single AP: < 7x10-4  

Repeated APs: < 7x10-3 

2D 

Plane 

4.69 

x10-4  

3.85 

x10-3  

9.27 

x10-4  

3.85 

x10-3  

2D 

Spiral 

1.14 

x10-3  

4.20 

x10-3   

1.87 

x10-3  

2.69 

x10-3  

Table 1: MSE scores for all DL models. Lower 

scores were seen for a single AP compared to the 

case of repeated APs in 0D and 1D, as well as for the 

plane waves compared to spiral waves in 2D.  

 

Figure 2.  Approximation of a single AP solution of 

FN equations over 100 s in 0D using the PINN 𝐿𝑜𝑠𝑠 

function for the FCNN (top) and RNN (bottom) 

models, with blue representing the ground truth 

solution and orange the NNs predictions. 

Figures 2 and 3 illustrate the performance 

comparison of the two PINN implementations in 0D 

and 1D for single APs. RNN-based surrogate PINN 

outperformed FCNN-based PINN in both cases.  

The 2D spiral wave propagation predicted by the DL 

models is shown in Figure 4. The wavefront for the 

traditional FCNN and RNN is compared to the same 

spiral wave predicted using the PINN. The 

traditional RNN errors were larger at the borders of 

the 2D tissue, in contrast to FCNN results, where 

errors occurred at the wavefront (Figure 4, top 

panels). The Physics-based FCNN simulates the 

spiral wave, while the RNN surrogate PINN 

produced a more accurate simulation (Table 1; 

Figure 4, bottom panels). These results are due to the 

hypermeandering of the spiral wave [5], which is 

difficult to predict without accounting for the 

spiral’s movement over a long period of time.  

 

Figure 3. Space-time plots of AP propagation along 

a 1D cable for both the PINN models, FCNN (left) 

and RNN (right). The cable boundaries are the main 

source of errors. Yellow/green and blue indicate AP 

and resting potential, respectively. 

 

Figure 4. Prediction of a 2D spiral wave in a down-

sampled 20x20 tissue at t = 99s, using the traditional 

FCNN (A) and RNN (B), and using the PINN 𝐿𝑜𝑠𝑠 

for the FCNN (C). The ground truth is shown for 

comparison (D). Yellow/green indicates depolarised 

regions, blue corresponds to resting regions. 



4. Discussion  

This study demonstrates the potential of DL, and in 

particular PINNs, for efficient simulations of cardiac 

electrophysiology. The training of PINNs was 

performed using a comparatively simple FN model 

in 0D, 1D and 2D scenarios. The main results of this 

study are: i) reproducing a single AP in 0D (single 

cell), 1D (cable) and 2D (tissue); ii) simulating 

repeated APs in 0D and 1D; iii) simulating a spiral 

wave in 2D tissue; iv) integrating Physics-informed 

loss functions; and v) comparing DL models for the 

same scenarios. All models reproduced the ground 

truth solutions of the FN equations. 

Few studies have considered the application of 

PINNs to solve differential equations for cardiac 

electrophysiology. Martin et al. [6] have recently 

applied DL for simulations of the Aliev-Panfilov 

model in 2D for planar, circular, and spiral waves, 

with/without a region of heterogeneity. Kashtanova 

et al. [7] extended an earlier Ayed et al. [8] model to 

simulate the Mitchell-Schaffer model in 2D, also 

including region of heterogeneity (scars).  

Validation and evaluation of the findings was 

achieved by comparing the DL predictions to the 

ground truth and to the previous studies. 

Specifically, the evaluation was accomplished by 

comparing the accuracy of DL predictions to the 

results obtained in previous studies of 2D planar and 

spiral wave. Ayed et al. obtained MSE of 5x10-3 for 

a planar wave with their CNN-based PINN, which 

was outperformed by our models. Martin et al. 

acquired a minimum MSE of 9x10-4 for both planar 

and spiral waves, which was close to our results.  

Thus, our study evaluated the performance of 

PINNs for cardiac electrophysiology modelling and 

showed their superiority over conventional NNs. 

Moreover, we also showed how RNN's temporal 

dynamic behaviour facilitates it in predicting 

complex patterns like spiral waves with good 

accuracy. Future work should focus on extending 

our surrogate RNN loss function with a physical 

component to obtain more accurate predictions.  

5. Conclusion  

This research shows growing potential of PINNs 

that utilise physical information to solve ODEs and 

PDEs for biomedical applications. The FN equations 

describing AP propagation in 0D, 1D and 2D can be 

solved using traditional NNs and PINNs. Both types 

of networks achieve sensibly accurate predictions. 

PINNs combine the speed and powerful function 

approximation ability of NNs and the physical 

information contained in the equations. Hence, 

PINNs can provide an efficient computational tool 

for cardiac electrophysiology simulations. 
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