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Abstract 

Photoplethysmography (PPG) is one of the most 

promising alternatives for non-invasive and cuffless blood 

pressure (BP) monitoring. In recent years, several 

machine learning approaches have been considered for 

this task: either feature engineering-based to map PPG-

derived features into BP values or feature learning-based 

with an automated feature extraction process. The 

generalization capability, namely the ability of a model to 

adapt to unseen data, is an important aspect of such data-

driven models due to the heterogeneity of PPG waveforms. 

However, in published studies, this point is generally 

omitted. Therefore, we propose to assess the 

generalization capability of a feature learning model built 

to estimate BP from PPG signals by comparing the model 

accuracy (bias) and precision (standard deviation of the 

error) on two datasets with different recording protocols. 

On unseen subjects from the training dataset, the proposed 

model achieved mean and standard deviation errors of -

0.88±10.29 mmHg for systolic BP (SBP) and –0.60±5.76 

mmHg for diastolic BP (DBP). Whereas, on the other 

dataset, the same metrics were 1.13±12.86 mmHg for SBP 

and -0.44±6.99 mmHg for DBP. Taken together, these 

results show that a feature learning model can extract 

feature representation that are generalizable over different 

populations and different PPG sensors. 

 

 

1. Introduction 

Hypertension is a serious condition that greatly 

increases the risk of developing cardiovascular diseases 

[1]. It affects about one third of the adult population. 

Moreover, one of the primary concerns with hypertension 

is the absence of perceptible symptoms in approximately 

46% of cases. Continuous blood pressure (BP) monitoring 

allows the identification of abnormal fluctuations. It would 

therefore help early detection of hypertension and prevent 

potential complications. In the effort of developing non-

invasive continuous and cuffless BP monitoring devices, 

photoplethysmography (PPG) has recently gained 

increased interest. This simple and low-cost optical 

technology detects blood volume variations in the 

microvascular bed of tissues. The analysis of the pulse 

morphology and its derivatives, known as pulse wave 

analysis (PWA), has revealed characteristic points 

correlated to cardiovascular parameters and useful in the 

modelling of BP [2], [3]. Various supervised regression 

machine learning (ML) methods have already been 

investigated to translate the PWA-based features into BP 

values [2], [4]–[6]. In [7], we highlighted the potential of a 

feature learning approach for BP estimation from PPG 

signal. With an automatic feature extraction process, we 

have addressed some of the limitations of feature 

engineering, such as the computational complexity of 

some features and the requirement of expert knowledge. 

The proposed model based on convolutional layers 

combines the feature learning task with the regression task 

in a single architecture. It extracts representative 

information from an ensemble average (EA) pulse 

computed over PPG windows and estimates systolic (SBP) 

and diastolic BP (DBP) accordingly. 

However, ML methods, such as neural networks (NNs), 

are data-driven, i.e. they are built based on data available 

during the training of the model. Such a type of models 

raises the question of their generalization capability, which 

describes the model’s ability to adapt to unseen data. This 

aspect is particularly relevant with the heterogeneity of 

PPG waveforms, which typically vary according to 

individual-specific characteristics, the PPG sensor used, or 

the measurement site. Although crucial to the success of 

the model and its application, this aspect is, most of the 

time, not addressed in published studies. 

The present work proposes to assess the generalization 

capability of a PPG-based BP estimation model primarily 

introduced in [7]. Such a study could help to fill the gap 

between research and potential real-world use case. To 

reach this goal, we use PPG signals with associated BP 

readings from two datasets. Both collected during non-

cardiac surgical interventions but with different PPG 

sensors and including different target populations. 



2. Materials and Methods 

2.1. Datasets 

In this study, two datasets are used to evaluate the 

generalization capability of the proposed BP estimation 

model in a context of high BP variability induced by the 

administration of anaesthetic, analgesic and anti-

hypotensive agents. They were collected using different 

protocols, including various target population (Asian vs. 

Caucasian) and PPG sensors (finger-clip in transmission 

mode vs. smartphone in reflectance mode). They were both 

recorded in operating room (OR), allowing to have the 

radial arterial BP (ABP) from an invasive catheter as 

reference.  

The largest dataset is retrieved from the open-access 

VitalDB data bank [8]. It includes the recordings of 6’388 

patients admitted at Seoul National University Hospital 

(Seoul, Republic of Korea) that underwent non-cardiac 

surgical interventions between June 2016 and July 2017. 

The study was approved by the local ethics committee (H-

1408-101-605, NCT02914444 at ClinicalTrials.gov). We 

select patients including the original waveforms of ABP 

and PPG, which results in 3’326 patients. This dataset is 

referred to as VitalDB in this paper.  

The second dataset is from a study at the Lausanne 

University Hospital (CHUV, Lausanne, Switzerland) in 

collaboration with the Geneva University Hospital (HUG, 

Geneva, Switzerland) [9] approved by the local ethics 

committee (CER-VD no. 2018-01656; NCT03875248 at 

ClinicalTrials.gov). It includes the recordings of 121 adult 

patients enrolled from April 2019 to November 2019 and 

undergoing general anesthesia for diverse non-cardiac 

surgical reasons. The main difference with VitalDB is in 

the PPG sensor. In this study, instead of a finger-clip 

sensor, the camera of a Samsung Galaxy S7 smartphone is 

used. This dataset is therefore referred to as OR_S7 in the 

paper. The ABP recording starts at general anesthesia 

induction and lasts for 20 minutes. For each patient, ten 60-

second PPG segments were recorded at 120-second 

intervals.  

 

2.2. Preprocessing 

Due to missing or unreliable values, artifacts, as well as 

poor-quality signals in the datasets, the following 

preprocessing steps are applied. The first step consists of 

removing non-physiological or disconnected ABP signals. 

Based on [10], each 60-second PPG segment is then 

aggregated into an EA pulse and the first and second 

derivatives are computed. The reference SBP and DBP 

values are obtained by calculating the median over each 

corresponding 60-second segment of the ABP signal. The 

segments with too much distortion or noise are excluded 

based on an EA quality index (≥ 75%) as well as indicators 

of reference variability (≤ 10%) and reliability (≥ 50%). 

The EA pulses are finally zero-padded up to the maximum 

observed cardiac period and resampled to a length of 256.  

Some BP characteristics and the patient demographics 

of the two datasets after preprocessing are summarized in 

Table 1. For the VitalDB dataset, we end up with 1’492 

patients and 166’966 EA pulses, while 101 patients and 

2’238 EA pulses remain for the OR_S7 dataset. 

 
Table 1. Demographic and BP characteristics. 

Characteristics 

VitalDB 

N = 1492 

OR_S7 

N = 101 

Age  

(y) 

59.4 ± 14.0 

(18 – 92) 

57.8 ± 14.2 

(24 – 87) 

Height  

(cm) 

162.7 ± 8.7 

(134.1 – 188.6) 

169.8 ± 9.4  

(143 – 190) 

Weight  

(kg) 

61.6 ± 11.5 

(35.4 – 139.7) 

76.3 ± 17.0 

(45 – 152) 

Gender, male 821 (55) 51 (50) 

SBP average  

(mmHg) 

117.2 ± 11.7  

(89.5 – 169.1) 

117.1 ± 20.3 

(84.1 – 199.4) 

DBP average  

(mmHg) 

62.4 ± 7.6 

(41.8 – 90.7) 

60.7 ± 9.6 

(37.6 – 87.3) 

SBP std  

(mmHg) 

14.8 ± 4.9  

(2.7 – 37.4)  

13.3 ± 9.2 

(1.0 – 39.9) 

DBP std  

(mmHg) 

7.9 ± 2.5  

(0.9 – 18.7) 

6.5 ± 4.1 

(0.3 – 22.0) 

Data are presented as Mean ± STD (Range) or count (%). 

 

2.3. Model 

 
Figure 1. Schematic description of the feature learning model 

with a PPG-BP calibration measure. 

For cuffless BP estimation monitoring devices, a 

calibration of the system usually helps to adjust for inter-

subject variability of the PPG waveform. As illustrated in 

Figure 1, we opt for a calibration process based on an initial 

PPG measure with its associated reference BP reading. 

Each input comprises the PPG measure from which to 

estimate BP as well as a calibration PPG-BP measure. And 

each PPG measure combines the EA pulse and its second 

derivative, which is also called acceleration 

plethysmogram (APG). To be more representative of a real 

use case, the calibration measure is always taken from the 

same recording, within the same inter-flush segment and 

before the estimation measure. Both feature learning and 

regression tasks are integrated into the same model to 

simultaneously extract relevant information from the PPG 



and provide a BP estimate.  

The two feature extraction blocks in Figure 1 are 

identical and take in parallel the estimation and calibration 

measures. Such a block is composed of 4 one-dimensional 

convolution layers. After each convolution, a rectified 

linear unit (ReLU) activation function is applied, and a 

one-dimensional max-pooling layer follows. We then 

concatenate the features extracted from both estimation 

and calibration measures together with the calibration BP 

values. All features are passed to the regression block, 

which outputs a BP estimation value through a series of 2 

fully connected layer with ReLU activation function.  

Various aspects of a NN can be adjusted in order to 

prevent overfitting and improve generalization. Some of 

them are considered while choosing the model 

architecture. The first is to constrain the model complexity, 

as a NN with a high number of parameters, i.e. multiple 

layers and neurons, is more likely to overfit data. We also 

apply dropout [11]. The idea is to randomly deactivate a 

certain number of neurons during the training. At each 

iteration, the model will learn with a different 

configuration of neurons. Another technique considered is 

weight regularization. As a network with large weights is 

more susceptible to small changes in the input, we 

constraint the growth of the weights by adding a L2 penalty 

to the loss function. The last strategy considered is early 

stopping. One challenge with NNs is to train the model 

long enough to learn the desired task but not long enough 

to overfit the training data. By monitoring the performance 

of the model on the train and validation sets, the idea is to 

stop before the error on unseen examples starts to increase. 

 

2.4. Training setting 

The model is implemented in Python using the PyTorch 

deep learning framework. Its hyperparameters are tuned 

using VitalDB. This dataset is split into train, validation 

and test sets in a ratio of 6:2:2. To guarantee a similar BP 

distribution across the three sets, this partitioning is done 

in a stratified manner, using patient’s mean and standard 

deviation SBP and DBP values. The model parameters are 

optimized by minimizing the Huber loss function [12] with 

the Adam algorithm. 

 

2.5. Evaluation 

As the main purpose of this study is the evaluation of 

the generalization capability of the proposed model, the 

model is evaluated on two aforementioned datasets with 

different recording protocols, namely the test set of 

VitalDB and the whole OR_S7 dataset. 

The performance of the model in providing an absolute 

BP estimate is assessed by comparing the proposed feature 

learning-based method to the invasive reference in a 

context of general anaesthesia induction. In absence of 

applicable standard for cuffless BP monitoring, the 

evaluation is done based on the ISO 81060-2:2018 norm, 

in terms of accuracy (bias) and precision of agreement 

(standard deviation of the error). The baseline of 

comparison is a naïve model assuming no change in BP 

after calibration.  

 

3. Results 

Table 2 and Table 3 summarize the performance of the 

proposed model on VitalDB dataset for SBP and DBP 

respectively in terms of ME and STDE in mmHg. The 

feature learning-based model outperforms the naïve model, 

with a reduction in STDE of approximately 48.5% for SBP 

and 48.1% for DBP. These results confirm the model 

ability to extract relevant information from the PPG and 

APG waveform relative to BP. The difference of STDE 

between train and test sets is of 1.24 mmHg for SBP and 

1.21 mmHg for DBP. It reveals a reduced overfitting effect 

and good generalization.  

 
Table 2. SBP estimation performance on VitalDB in mmHg. 

 Train Test 

 ME STDE ME STDE 

NN model -0.95 9.05 -0.88 10.29 

Naïve model -1.35 19.88 -0.80 19.99 

 
Table 3. DBP estimation performance on VitalDB in mmHg. 

 Train Test 

 ME STDE ME STDE 

NN model -0.05 4.55 -0.60 5.76 

Naïve model -0.58 10.16 -0.39 11.09 

 

Table 4 compares the performance of the NN model for 

SBP and DBP estimation in terms of ME and STDE in 

mmHg between the two datasets, namely VitalDB and 

OR_S7. We observe a difference of 2.57 mmHg for SBP 

and 1.23 mmHg for DBP on the STDE between the two 

datasets. 

 
Table 4. Evaluation performance of SBP and DBP estimation 

on the VitalDB and OR_S7 dataset. 

 SBP DBP 

 ME STDE ME STDE 

VitalDB -0.88 10.29 -0.60 5.76 

OR_S7 1.13 12.86 -0.44 6.99 

 

4. Discussion 

To the best of our knowledge, only a few studies have 

evaluated the generalization capability of BP estimation 

models based on PPG signals and ML. In this paper, we 

propose to verify how such a model would perform on 

unseen data recorded with different PPG sensors and on 

different target populations.  

The model implemented depends on an EA PPG pulse 



and its second derivative. PPG waveforms are affected by 

many factors. Some individual-specific characteristics or 

external factors affect its morphology, such as age [13], 

skin pigmentation, tissue composition or measurement site 

[14], which makes generalization a crucial aspect of 

developing PPG-based BP estimation model. Adding a 

one-time calibration of the system, such as here with an 

initial PPG-BP spot measurement, helps to cope with the 

inter-subject variability of the PPG waveform and to 

improve generalization capability to some extent.  

The model’s ability to capture relevant and 

generalizable information depends on the quality of the 

recorded PPG signals. In this study, the PPG sensors in the 

two different datasets are both localized at the fingertip. 

However, they are of different configurations: one in 

transmission while the other in reflectance. Signals 

recorded in reflectance are known to be of lower quality 

than in transmission. High quality PPG signals might be 

required to properly extract morphological features from 

the PPG pulse. Lower quality PPG signals recorded in 

reflectance might affect the performance of the model.  

Some aspects related to the NN architecture have 

already been considered in this study to improve 

generalization capability. However, a promising solution 

that could be investigated is domain adaptation. This is a 

transfer learning scenario in which the target probability 

distribution differs from the source setting but remains 

related, such as PPG signals from various sensors or target 

populations. The model might generalize better, as it learns 

to recognize representations applicable to different 

situations. Such an approach has the potential to help 

account for the PPG waveform variability. It would be 

interesting to deepen research in this direction.  

 

5. Conclusion 

The present study investigates the challenge of building 

a BP estimation model based on PPG signals and feature 

learning that generalizes well to unseen data. This task is 

particularly difficult due to the heterogeneity of PPG 

waveforms. The results highlight the ability of such a 

model to adapt well to unseen data from different PPG 

sensors and target populations.  
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