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Abstract

Atrial Fibrillation (AF) is the most common supra-
ventricular arrhythmia and has different underlying acti-
vation mechanism, including functional rotors (FR) and
ectopic foci (EF). In this work we propose an approach
for locating FR and EF in potential maps, which were
tested with mathematical phantoms. 12 phantoms were
created (128x128 array, 4 s, Fs 500 Hz), simulating the
motion of: FR (4 maps), EF (4 maps) and superpositions
of these (4 maps). These were downsampled to different
grids from 16x16 to 8x8, simulating electrode acquisition.
Noise (SNR from 2 to 60) was added. To locate the mecha-
nism, the signals were filtered and interpolated. Farneback
optical flow was applied to compute the motion vector field
(MVF). The MVF was normalized and its temporal aver-
age was calculated. Finally, we computed curl and diver-
gence, by using a x and y oriented 5 X 5 Sobel filter as a
estimation of the of the partial derivatives. The location
of extrema in the curl and divergence maps were used for
locating FR and EF respectively. Method robustness was
tested by comparing the algorithm performance on differ-
ent grid sizes and SNR. The mechanism was considered to
be detected accurately if the position was within a normal-
ized error of 5% from its respective phantom location. The
results showed that our approach was able to locate both
mechanisms, but revealed a dependency on spatial resolu-
tion.

1. Introduction

Atrial Fibrillation (AF) is the most common supra-
ventricular arrhythmia and has different underlying acti-
vation mechanism, including functional rotors (FR) and
ectopic foci (EF) [1, 2]. AF is also associated with
an increased morbidity related to heart failure and ictus
[2-4]. FR consist of functional reentrant activity where the
curved wavefront and wavetail meet each other at a singu-
larity point, or phase singularity, a point where all phase
values converge [5-7]. As demonstrated in experiments
with isolated hearts and supported by animal and patient

studies, self-sustained FR can be present in the atria, lead-
ing to complex patterns of activation, possibly being the
source of paroxysmal and chronic AF [8]. EF describes
a condition where a set of cells depolarize in a indepen-
dent rhythm that fires spontaneously, creating a wave that
spread radially [1,9].

1.1.  Optical Flow

Optical flow (OF) is the apparent motion of brightness
patterns in an image sequence. Sparse OF provides a vec-
tor field for special features, normally pixels corresponding
to edges or corners of objects, while dense OF provides a
vector field for all pixels in the image. Dense algorithms
related to motion vector field (MVF) analysis are known to
have medical imaging applications, in particular for tem-
poral analysis of cardiac images [4, 10-13]. A number of
different methods exist for quantification of OF [14-16]
of which the dense OF algorithms by Horn and Schunck
(HS) and Farneback (FOF) have been used extensively in
the literature.

Furthermore, there are various ways to detect FR and EF
and the proposed methods could use techniques based on
phase analysis, local activation time, or OF.

Rios-Muiioz et al. (2018) used signals acquired from pa-
tients with persistent AF and in silico simulations to vali-
date an approach using activation time maps [4]. Firstly the
signal was approximated by a linear function obtained by
minimizing the mean square error, and the activation was
detected from the function slope. For the in silico models,
the authors deployed a squared 16 x 16 node grid, emulat-
ing 256 different electrodes recording. After the transform,
the signal was interpolated using Shepard’s method [4,17].
Rios-Mufioz and others used OF from the isochronal maps,
estimated by HS [4,15]. For locating rotational activity, the
authors applied convolution to the MVF with a kernel con-
taining a rotational pattern. Bellmann et al. (2018) also
used OF, applied to transformed signals, with HS method
[12, 15]. In this study, OF was also used to identify FR
and EF, and compare the located mechanisms before and
after surgical intervention. Roney et al. (2021) used OF
from maps of normalized filtered derivatives of signals to



study preferential pathways in AF patient and models [13].
These authors also used HS for OF estimation. OF was
used to construct a streamline visualization that, in turn,
was used to perform qualitative analyses of FR and EF,
among other analyses [13].

As can be seen, several studies have applied HS to the
analysis of cardiac potential maps, which could be due
to its computational efficiency and ease of implementa-
tion. Despite this, alternative methods exist for dense OF
quantification, including Farneback’s method, which is the
selected method in the OpenCV library for Python3 and
C++.

FOF is a dense two-frame motion estimation algorithm
based on a polynomial expansion transform [16]. With this
algorithm the motion is calculated for every pixel, gener-
ating a bi-dimensional MVF for every pair of consecutive
frames. The neighborhood of each pixel is approximated
by a quadratic polynomial expansion given by Equation 1
[16]:
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where A is a symmetric matrix, b is a vector and ¢ a scalar.
These values are obtained by the weighted least square
method, with the weight value decreasing radially from
the center, and the neighborhood size is an arbitrary pa-
rameter. The displacement d is estimated by considering
the polynomial expansion for the second frame f,(z) the
polynomial expansion for the first frame after went through
a translation f1(z — d), showing that the translation d can
be found by solving the Equation 2:
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In this work, we propose and validate a method to de-
tect two FA mechanisms by using FOF and MVF analysis,
and distinguish EF and FR, and also clockwise and coun-
terclockwise FR.

2. Methods

Figure 1 illustrates our pipeline for location of the mech-
anisms EF and FR using FOF to compute the MVF and
then estimating the operators curl and divergence. The
methodology was validated using mathematical phantoms.
The phantoms were also used for parameter tuning and as-
sessing algorithm robustness.

2.1. Phantom Creation

12 phantoms were created (128x128 grid with 2000 time
samples at 500H z), simulating EF (4 phantoms), FR (4
phantoms) and superposition of both mechanisms (4 phan-
toms, see supplementary material [18]). Equation 3 sum-
marizes the EF phantom (Pgg) creation. The EF phan-
toms were created by: (i) determine the position (7o, jo)
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Figure 1. Pipeline for the mechanism location approach.

of the mechanism center; (ii) compute the Euclidean dis-
tance from each pixel, with position (3, j), to the mecha-
nism center, then multiplied by an arbitrary coefficient A
related to spatial propagation of the signals; (iii) for each
time instant, add a temporal increment I (¢) to the map val-
ues, related to the sampling frequency (fs) and the mecha-
nism’s underlying activation frequency (F’); and (iv) these
values were used in a reverse sawtooth function, truncated
to the 4th order of its respective Fourier series SAW (),
which is a simplified approximation of the activation po-
tential.
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Equation 4 summarizes the creation of the FR phantom
(PEr). The FR phantom was created by: (i) selecting
two positions (7o, jo) and (i1, j1) for the mechanism: one
clockwise and another counter-clockwise; (ii) two phase
maps Phg and Phy were created by calculating the relative
angle from each pixel to the mechanism position; (iii) the
angle 0, referring to the relative mechanism positions, was
subtracted from Phg and added to Phy, aligning the maps;
(iv) the maps were multiplied by a weight, w, summed,
then a temporal increment I (¢) was added to these values;
and finally (v) the combined phase maps were used in a re-
verse sawtooth function SAW () as previously described.

Per(i,j,t) = SAW (Phow + Phy(1 — w) + I(t)) (4)
Pho = atan2(j — jo,i —ig) — 0
Phy = atan2(j — ji,i —1i1) + 0
0 = atan2(j1 — jo,i1 — to)
7= (i —ioj — j0), 1= (i1 —ioj1 — jO)
w = min (max (compy, T, 0), 1)






