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Abstract

Hypertrophic Cardiomyopathy (HCM) consists of a
thickening of the cardiac muscle, causing fatigue, changes
in the cardioelectric system, arrhythmias, and even sud-
den deaths. Variants in gene MYBPC3 are a well-known
cause of this illness. Our objective was to find variants in
other genes that can cause this pathology. For that pur-
pose, genetic data from a group of patients is analyzed
using embedding methods, which allow a lower dimen-
sional representation, which is very helpful for visualiza-
tion, diagnosis, and personalized therapy. Our results,
applying different methods –Principal Component Analy-
isis (PCA), t-distributed Stochastic Neighbor Embedding
(t-SNE), Uniform Manifold Approximation and Projection
(UMAP), Orthonormalized Partial Least Squares (OPLS)
and Supervised Autoencoders– on genetic data showed a
very good separability in the embedded space, allowing us
to identify 10 variants that cause that separability. These
results may be useful for identifying new HCM cases and
implementing new Machine Learning models in those em-
bedded spaces.

1. Introduction

Hypertrophic Cardiomyopathy (HCM) is an inherited
cardiac disease mainly characterized by a thickening in the
cardiac muscle. This leads to changes in the electric sys-
tem of the heart and can cause fatigue, arrhythmias, and, in
some cases, sudden cardiac deaths. Epidemiological stud-
ies in the last years estimate a prevalence of 1 in 500 peo-
ple in the general population [1]. This disease is associ-
ated with mutations in genes encoding proteins of the car-

diac sarcomere, Z-disc, and calcium-controlling proteins.
Some of them are well known as the ones that affect the
Myosin Binding Protein C (MYBPC3) [2]. Nevertheless,
many other variants may be also a cause of this disease.

To identify some possible causes, very large datasets
containing genetic information are usually used. This
makes it very difficult to find patterns in data and rela-
tions between variants. Intending to solve this problem,
Machine Learning has broken into medicine [3], giving
some very useful tools that allow researchers to find in-
trinsic data relations that is impossible to visualize for hu-
mans.

In this work, we present some embeddings-based meth-
ods, which project the original data onto lower dimension
spaces creating new latent variables that capture the infor-
mation of the original variables. This allows the visual-
ization of the high-dimensional data distribution in 2 or
3 dimensions showing the differences between HCM pa-
tients and control samples, leading to the identification of
some additional biomarkers that can be causes of these dif-
ferences. In that embedded space, we can also find how
similar or different the patients and controls are depending
on how far or close they are from each other.

2. Materials and Methods

2.1. Data

This study used genetic data obtained with the Next
Generation Sequencing technique. The available data cor-
responded to 62 HCM patients, who belong to 62 fami-
lies. There are 46 men and 16 women and the mean age is
46.08±16.78 years. On the other hand, we have 73 control
subjects. All the data is provided by the Hospital Clı́nico



Universitario Virgen de la Arrixaca (HCUVA, Spain). The
data was provided in Variant Call Format, and it contained
information on Single Nucleotide Polymorphisms (SNPs).
The data from the subjects were genes related to different
cardiomyopathies. The genes selected for the study were
those sequenced in all patients and controls to avoid biases
in the comparisons as much as possible.

The first step of our study consisted of preprocessing the
data, eliminating all the information that was not relevant
for the study, and codifying the SNPs in a suitable form
for applying the corresponding models. We hypothesized
that if a mutation is relevant, it will appear in all the pa-
tients. Therefore, we selected only the positions mutated
in all the HCM patients. There was a total of 57 variants
that fulfilled this condition. Then, we constructed a matrix,
namely X ∈ Rn×m, where n = 135, was the number of
samples, and m = 57 was the number of variables. The
variables considered contained the chromosome, the posi-
tion, and the alteration in that position (letter of the nu-
cleotide). The elements, xij , of that matrix were: 0 if the
sample had the reference nucleotide at that position; 1 if it
had the j − th alteration in heterozygosis; And 2 if it had
the j − th alteration in homozygosis. We also create the
output vector, y ∈ Rn, whose elements were +1 for HCM
patients and −1 for control.

2.2. Embedding methods

Although this dataset was not as complex as the initial
data, it was still impossible to find any pattern in the data
or visualize it. So we wondered if an embedded space of
latent variables and low dimensions could properly repre-
sent our data. To check this hypothesis, we propose the
following methods.

The first embedding method used for this purpose is
the unsupervised methods. These models are those in
which the algorithm is trained without using labeled data
[4]. Here, we propose 3 methods. Firstly, Principal Com-
ponent Analysis (PCA) [5]. It is a multivariate tech-
nique that extracts the most important information from
a dataset and represents it as a set of new orthogonal vari-
ables called Principal Components (PC). Mathematically,
PCA depends on the matrix’s Singular Value Decompo-
sition (SVD). Secondly, t-distributed Stochastic Neighbor
Embedding (t-SNE) [6] is an algorithm that embeds high
dimensional points in low dimensions respecting the sim-
ilarities between data on a multidimensional distribution
sense. The embedding is a nonlinear map created respect-
ing the statistical proximity among points in higher dimen-
sions. And thirdly, Uniform Manifold Approximation and
Projection (UMAP) [7] is a manifold learning technique
for dimensionality reduction, which is based on Riemann
geometry and algebraic topology.

The second embedding method used is the supervised

algorithms. Those are the models in which the algorithm is
trained, taking into account the labels of the data [4]. The
methods proposed in this class were 3. Firstly, we used
Supervised Autoencoders [8]. An autoencoder is a Neu-
ral Network where the outputs are set to the inputs, with
2 symmetric parts, an encoder and a decoder. In a super-
vised autoencoder, we add a supervised loss between both
blocks on the representation layer. Secondly, we used the
supervised variation of UMAP. And thirdly, we also pro-
posed Orthonormalized Partial Least Squares (OPLS) [9],
a method that removes variation from the data matrix that
is not correlated with the output. This algorithm can be
seen as a preprocessing method to remove systematic or-
thogonal variation from the dataset. The limitation of this
method with respect to the others is that we can only em-
bed the data onto a space that that have as much dimen-
sions as classes (in this case, 2).

3. Experiments and Results

Let the dataset used for the experiments be {X,y},
which was defined before. The idea of these experiments
is to represent the 57-dimensional dataset that we have in
3 dimensions, using the previously described techniques to
visualize it and see if any separability exists between HCM
patients and controls.

The results are shown in Figure 1a. All the methods
show perfect separability between the controls and the
HCM patients, although the embedded subspaces created
are different. This means that some variants exist that
make the difference between the affected patients and the
controls, which means that they can be involved in the de-
velopment of the disease.

Therefore, the next step is identifying the variables that
can cause this separability. It might be obvious that the
separability will occur due to the variants appearing in all
the patients but not in any control. In this step, we iden-
tified 10 variants that belong to 9 genes, shown in Table

Gene Chromosme Position SNP
CASQ2 1 116,311,198 C
RYR2 1 237,730,124 G
SOS1 2 39,224,351 T

TTN / TTN-AS1 2 179,623,939 C
TTN /RP11-88L24.4 2 179,643,886 G

CACNA1D 3 53,529,140 C
ANK2 4 114,267,023 A

MYBPC3 11 47,364,762 G
ABCC9 12 22,047,151 T
HCN4 15 73,616,635 C

Table 1: Variants present in all the HCM patients but not
in any control.
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Figure 1: Results of the implementation of all the models to the matrix (a) with all the variables, and (b) without the variants
that do not appear in any control. The orange points correspond to HCM patients and the blue points correspond to control
subjects.



1. Each row of the table shows the next information for
one of those variables: the name of the gene, the chromo-
some and position of the SNP (according to the reference
GRCh37/hg19), and the SNP, the nucleotide present in that
position. Note that all the patients also presented the same
alteration at that position.

Once we identified the variants, we applied the same
methods again, but to a matrix without the variables shown
in Table 1, to see how the data is distributed. These re-
sults are shown in Figure 1b. All the methods presented
a loose separability now in the embedded space. As ex-
pected, there were no big differences between the controls
and the patients in the rest of the variables.

To measure the separability in the embedded space, we
constructed a classifier using the Support Vector Machines
method [10], which is a Kernel method in which the hy-
perplane is created by maximizing the margins, i.e., the
distance to each class. In this case, we choose the Radial
Basis Kernel and tune the hyperparameters (C and γ) us-
ing a 5-fold cross-validation. For measuring the quality of
the results, we used 3 metrics, accuracy (ACC), sensitivity
(SENS), and specificity (SPE), defined as usual.

In our case, the mean results are the following after do-
ing 30 realizations and choosing different training and test
sets. First, for PCA, ACC = 0.64, SENS = 0.52, and
SPE = 0.76. Second, for tSNE ACC = 0.68, SENS =
0.82, and SPE = 0.58. Third, for UMAP, ACC = 0.68,
SENS = 0.81, and SPE = 0.59. Fourth, for super-
vised Autoencoders, ACC = 0.63, SENS = 0.51, and
SPE = 0.73. Fifth, in the case of OPLS, ACC = 0.66,
SENS = 0.61, and SPE = 0.71. Finally, for Supervised
UMAP ACC = 0.65, SENS = 0.73, and SPE = 0.59.
The ACC is low and medium-low in all cases, and regard-
ing the SENS and SPE, we can see that the classifiers can
struggle when finding and identifying positive or negative
values depending on the methods.

4. Conclusion

This study explored the differences between controls
and HCM patients embedding the original data onto lower-
dimensional latent spaces. By doing this, we have iden-
tified 10 variants in 9 different genes that are causes of
that difference, and we have been able to quantify how far
or close is the HCM-affected subjects from non-affected
ones.

Although this information is not conclusive enough to
determine whether those variants are a cause of HCM or
not, it may help clinicians in the task of identifying new
HCM cases. On the other hand, working on those embed-
ded spaces may be very useful in future works for imple-
menting new classifiers, expecting improved predictions
concerning the original spaces.
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