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Abstract

Ventricular tachycardia (VT) is a life-threatening car-
diac arrhythmia for which a common treatment pathway
is electroanatomical mapping and ablation. Recent ad-
vances in both noninvasive ablation techniques and com-
putational modeling have motivated the development of
patient-specific computational models of VT. Such mod-
els are parameterized by a wide range of inputs, each of
which is associated with an often unknown amount of er-
ror and uncertainty. Uncertainty quantification (UQ) is
a technique to assess how variability in a the inputs to a
model affects its outputs. UQ has seen increased attention
in computational cardiology as an avenue to further im-
prove, understand, and develop patient-specific models. In
this study we applied polynomial chaos based UQ to ex-
plore the effect of varying the tissue conductivity of fibrotic
border zones in a patient-specific model on the resulting
VT simulation. We found that over a range of inputs, the
model was most sensitive to fibrotic sheet direction, and
uncertainty in fibrotic conductivity resulted in substantial
variability in the VT reentry duration and cycle length.
Overall this study paves the way for future UQ applica-
tions to improve and understand VT models.

1. Introduction

Ventricular tachycardia (VT) is a life-threatening ar-
rhythmia often seen in failing hearts or in the context of
ischemia-related myocardial injury and scar.[1] Treatment
for such VT often includes ablation of critical regions of
the myocardium to prevent the reentrant circuit, and com-
putational modeling has emerged as a powerful tool to
inform ablation treatment.[2, 3] Patient-specific computa-
tional models can provide pre-operative insight into possi-

ble reentrant circuits, predict the success of proposed abla-
tion strategies, and even estimate latent reentrant circuits
that may arise after the dominant one is treated.[3] Re-
cent studies exploring the use of radiation-based ablation
of cardiac tissue further motivate increased application of
computational models which can noninvasively predict pu-
tative ablation sites.[2] This rising popularity of such com-
putational models demands improved understanding of the
effects of uncertainty and variability of model inputs.

Uncertainty quantification (UQ) offers techniques to ef-
ficiently and robustly explore the effects of parameterized
variability of the inputs of a model on the output.[4] UQ
has seen increased attention and application to biomedical
modeling problems as it provides statistical expressions of
the sensitivity of a model to various inputs and their in-
evitable uncertainties. [5] Patient-specific models of VT
have a large number of input parameters, including de-
scriptions of the cellular ionic currents in healthy, fibrotic,
and scarred tissue, bulk extra- and intracellular conductiv-
ity values, and many more, all of which are associated with
some degree of uncertainty and variability.[3] Uncertainty
quantification in this context can be difficult because of
the number of inputs and because of the likelihood that
changes to these parameters could drastically change the
path of a VT circuit. It remains challenging to identify out-
puts of models outputs which are both sufficiently detailed
to provide insight into the behavior of the model given in-
put uncertainty while also remaining consistent enough to
produce interpretable UQ outputs.

In the study we sought to address these challenges by
narrowing the UQ focus to a select set of parameters and
model outputs that could be reliably assessed in all simula-
tions, regardless of VT morphology. As input parameters,
we focused on variability in the conductivity of the fibrotic
tissue defined in the border zone between healthy tissue



and an infarct scar, as this region is a common clinical tar-
get for ablation therapies as it plays a key role in reen-
try. We applied forward parametric uncertainty quantifica-
tion to assess the effect of varied intracellular conductivity
in the fibrotic region in longitudinal, transverse, and nor-
mal directions on simulated VT in a human patient-specific
model. Specifically, we explored the effect on activation
maps of the final beat of a VT induction protocol as well
as global metrics such as VT cycle length and duration of
the VT.

2. Methods

Patient Specific Model: Structural and late Gadolinium-
enhanced (LGE) MRI images were acquired from a single
patient at the University of Utah Hospitals. Ventricular
anatomy, as well as scar and fibrosis patterns, were seg-
mented using Seg3D (www.seg3d.org), where LGE MRI
intensity was used to define scar (¿70% of total intensity)
and border zone fibrotic (between 70% and 40% total in-
tensity) regions in the tissue. Segmentations were con-
verted to computational meshes using a combination of in-
house processing tools, leveraging tetgen and the iso2mesh
library.[6] Models were further refined and prepared for
VT simulation using the mesh refinement tools present in
the openCARP simulation package.[7] All procedures and
data acquisition were completed with University of Utah
IRB approval.

Simulation of VT: All simulations were performed us-
ing the open-source simulation package openCARP using
the monodomain formulation.[7] Ionic membrane models
simulating the behaviors of healthy endo-, mid-, and epi-
cardial cells, fibrotic cells, and scar cells were assigned us-
ing the Ten Tusscher and Panfilov (TTP) formulation[8],
with adjustments for fibrotic and scar regions based on
Dun et al.[9]. A rule-based method was used to assign
myocardial fiber direction throughout the model.[10] Con-
ductivities were tuned to achieve a conduction velocity of
0.8 m/s isotropically in healthy tissue, and 0.4 m/s isotrop-
ically in fibrotic tissue. Conductivity in the scar region
was set to 0 S/m. A stimulus site was chosen near the
intraventricular septum, which has been previously found
to reliably induce simulated VT. The stimulation protocol
consisted of two S1 pulses at a cycle length of 600 ms,
followed by a single S2 pulse 340 ms after the last S1.
Simulation was then continued for 5 seconds after the S2
pulse.

Uncertainty Quantification: We applied uncertainty
quantification to assess the effect of varied intracellular
conductivity in the fibrotic region via polynomial chaos ex-
pansion (PCE) as described previously and implemented in
the open-source UQ framework UncertainSCI.[4] Briefly,
PCE formulates a d-degree polynomial emulator of the un-

Table 1. intracellular conductivity ranges for each direc-
tion in the fibrotic region. Each conductivity value is re-
ported in units of S/m.

Conductivity Mean Range
longitudinal 0.033 ± 0.006

sheet 0.035 ±0.006
normal 0.04 ±0.008

derlying forward process, trained using sampled parameter
value-model output pairs. Using a d = 5 emulator, we
parameterized our model according to three conductivity
values (fibrotic intracellular longitudinal, transverse, and
normal conductivities), whose ranges are summarized in
Table 1. We utilized a truncated normal distribution for
all parameters. UncertainSCI then provided n = 66 sam-
ples of parameter values for which we ran VT induction
simulations as described above, adjusting the fibrotic con-
ductivity values according to each parameter sample. As
model outputs, we then computed the following to train
PCE emulators: an activation map of the S2 beat, the cy-
cle length of the resulting VT, and the overall length of the
reentry. Length of reentry was calculated as the time be-
tween the initiation of the S2 pulse and the last time instant
at which electrical activity was detected in the simulation.
In some cases, reentry continued for the entire 5 seconds
following the S2 pulse and these were considered to be sta-
ble VT circuits, for which the reentry length was set to the
duration from S2 to the end of simulation time. For each
of these three outputs (S2 activation map, VT cycle length,
and reentry length), a separate PCE emulator was trained
using the outputs for each parameter sample. From these
emulators, we then extracted statistics of the mean value,
standard deviation, and global sensitivity to each parame-
ter and parameter combination.

3. Results

Variation of the conductivity in the fibrotic region of the
patient-specific model according to a truncated normal dis-
tribution and the ranges detailed in table 1 resulted in an
average reentry time of 2.64 seconds with a standard devi-
ation of 2.83 seconds. The average cycle length was 0.43
seconds, with a standard deviation of 0.24 seconds. Fig-
ure 1 contains a sample VT simulation in which the activa-
tion wavefront for the S2 beat can be seen in frames F1 and
F2, followed by the first cycle of reentry in frames F3 and
F4. The reentry originated near the top of the transmural
left ventricular scar in a region of fibrosis, as indicated by
the red arrow. Figure 2 shows the sensitivity, mean, and
standard deviation for the activation map of the S2 stimu-
lus.

Sensitivity values for each parameter and parameter



Figure 1. Patient-specific computational model. Healthy myocardium is shown in gray, fibrotic regions in yellow, and scar in brown. The top views
show a basal perspective with the right ventricle to the right. The bottom views show a posterior apical view with the left ventricle on the right and the
right ventricle high and to the left. In each of the frames (F1 through F4), activated tissue is shown in pink. Each frame corresponds to a time instant
indicated in the time signals to the right. S1 and S2 indicate the timing of the S1 and S2 stimuli. Each time signal originates from the corresponding
colored node in the right-most geometry. From top to bottom, the time signals are from (blue) the posterior apical intraventricular septum, (yellow) the
anterior intraventricular septum, (red) the posterior basal intraventricular septum, and (green) the left ventricular free wall. Simulation results are shown
using the nominal (mean) conductivities for the fibrotic region. The site of the first reentry is indicated with the red arrow.

Figure 2. UQ outputs for uncertainty in the fibrotic conductivity values. Views match those in figure 1. Sensitivity (a unitless quantity from 0 to 1) for
each parameter and parameter combination is shown across the top. Mean activation time for the S2 stimulus is shown on the right, while the standard
deviation is shown on the left. The pink star indicates the S1 and S2 stimulus site.

combination are detailed in Table 2. The sensitivity val-
ues across each parameter combination add to 1 for reen-
try length and cycle length. However, because sensitivity
is computed at each point in the model for the S2 activa-
tion map, the sensitivity values reported for S2 activation
(which are the median of the sensitivity in the fibrotic re-
gions) do not add to 1, but rather are meant to convey the
relative sensitivities of the S2 activation map to the differ-
ent parameter combinations.

Table 2. Sensitivity values for each conductivity parameter (longitu-
dinal direction: long, sheet direction: sheet, and normal direction: norm)
and combination across the three output types. For the S2 activation map,
the median sensitivity in the fibrotic region is reported.

params reentry cycle length S2 ActMap
long 0.056 0.039 0.063
sheet 0.229 0.139 0.307
norm 0.083 0.111 0.004

long+sheet 0.219 0.158 0.020
long+norm 0.101 0.080 0.007
sheet+norm 0.122 0.243 0.012

long+sheet+norm 0.190 0.230 0.010



4. Discussion and Conclusions
In this study, we applied PCE UQ to explore the effect

of variability in the conductivity of a fibrotic border zone
on simulations of VT induction. The length of the reen-
try varied substantially, given varied fibrotic conductivity,
as evidenced by a standard deviation of 2.83 seconds. In
some of the samples used to train the PCE emulator, we
noted only a single beat of reentry that was not able to
sustain, while in others, the VT reentry sustained for the
duration of the simulation. These results alone indicate the
importance of the conductivity of the fibrotic region on the
resulting VT simulation and highlight the importance of
properly tuning such parameters to produce robust patient-
specific behavior. The simulated VT cycle length also var-
ied substantially, with a mean of 0.43 seconds and a stan-
dard deviation of 0.24 seconds. These results suggest that
the reentrant pathway may have been substantially differ-
ent under different fibrotic conductivities. In future stud-
ies, we plan to investigate the changes to the reentrant path-
way, using the results from this study as a foundation for
the UQ-modeling pipeline.

Interpretation of VT reentry behaviors are not straight-
forward, however, we chose the S2 activation map as one
of our UQ inputs because it was a reliable measure we
were able to make in each simulation whose values did not
change drastically. A possibly more intuitive metric, such
as the activation map of a single reentrant cycle, would
produce less interpretable UQ results, as the reentrant path-
way might vary substantially, changing direction and path
completely between samples. Interpretation of the result-
ing values such as the mean or standard deviation of such
activation maps would not necessarily be useful. In the S2
activation map, we noted the highest level of standard de-
viation in the fibrotic region on the right and basal side of
the scar (see Figure 2. The highest sensitivity values for
the sheet conductivity were on the basal side of the scar,
which corresponded to the site of reentry in the baseline
simulation (see Figure 1). This result may suggest that
sheet conductivity plays an essential role in the develop-
ment of the reentrant pathway, which is corroborated by
the high sensitivity to sheet conductivity seen in the reen-
trant length and cycle length outputs (Table 2).

This study was limited to a single patient and a lim-
ited set of both input parameters and output metrics. Fu-
ture studies should develop output metrics to drive further
UQ analysis and identify other parameters of interest. As
conductivity heavily affects conduction velocity, our future
studies will investigate these results in the context of con-
duction velocity changes in the fibrotic region. This study
provides a solid foundation for the application of UQ to
VT simulation, and demonstrates the utility of UQ in this
domain by exploring the effect of variable conductivity in
the fibrotic region, a highly clinically relevant and poorly

understood area of tissue, on the resulting VT simulation.
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