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Abstract

The use of machine learning for disease diagnosis is
gaining popularity due to its ability to process data and
provide accurate results; however, its optimization remains
a challenge. In the case of Chagas disease, endemic in
Latin America and which has emerged as a health prob-
lem in more urban areas, early and accurate diagnosis is
essential to prevent cardiac complications, since an esti-
mated 65 million people are at risk of contracting it. This
study used a database of 292 subjects distributed into three
groups: healthy volunteers (Control group), asymptomatic
Chagasic patients (CH1 group) and seropositive Chaga-
sic patients with incipient heart disease (CH2 group). A
densely connected neural network was used to classify
them into the group to which they belonged. The network
received as input the Approximate Entropy values of each
individual, which were calculated from the 24-hour circa-
dian profiles every 5 minutes (288 RR subsegments). In
addition, time series data augmentation algorithms were
applied during the training phase to improve the classifi-
cation results. This approach allowed to reach 100% accu-
racy and precision, validated by the ROC curve with AUC
values of 1. Thus, the efficiency demonstrated by the neu-
ral network suggests that increasing the amount of training
data may be crucial to optimize the early diagnosis of car-
diac involvement that may develop Chagas disease, and
consequently, it could be a determining factor in refining
machine learning in this area.

1. Introduction

Chagas disease, or American trypanosomiasis, is caused
by Trypanosoma cruzi. This vector is present in 21 conti-
nental countries in the Region of the Americas and about

65 million people are at risk of contracting the infection,
which causes approximately 12,000 deaths annually [1],
and in recent decades it has begun to be detected in other
non-endemic regions of the Americas [2]. The disease
presents acutely and, if not diagnosed and treated in time,
becomes a chronic disease. The most important conse-
quence is chronic chagasic cardiomyopathy, which occurs
in 20-40% of infected persons and can be potentially lethal.
As it is considered a neglected tropical disease [2], the
use and optimization of non-invasive and low-cost diag-
nostic tools is paramount. In this context, machine learn-
ing has become popular as a promising technique for dis-
ease diagnosis, including Chagas disease [9–12]. Despite
this, optimization of these tools remains a challenge, due
to, among other reasons, the limited amount of available
data, highlighting the need to implement data augmenta-
tion techniques to improve their efficiency.
Although image analysis techniques are widely used, heart
rate variability (HRV) analysis can be very useful due to
its prognostic significance. In particular, Approximate En-
tropy has been shown to be a valuable statistic for the study
of congestive heart failure [5, 6], one of the main clinical
manifestations of Chagas disease [7], and it was also used
to identify significant differences at different times of the
day between groups of patients with this disease [8]. This
is why the present work proposes the development and
optimization of a densely conected neural network using
the HRV based on the approximate entropy of a database
of patients with Chagas disease, using data augmentation
techniques, which, although are more common in image
analysis, they are also applicable to time series.



2. Method

2.1. Database

This study made use of the database of the Trop-
ical Medicine Institute of the Universidad Central de
Venezuela, which includes information on 292 individu-
als who underwent various tests with their respective in-
formed consent. These tests included clinical evaluation,
Gerreiro Machado-Serology test, chest X-ray, echocardio-
gram, electrocardiogram and Holter recording (24 hours).
The patients and volunteers were divided into three groups:
the Control group, consisting of 83 healthy persons (vol-
unteers), the CH1 group composed of 102 infected patients
only with positive Machado-Gerreiro serology test, and the
CH2 group composed of 107 seropositive patients with in-
cipient heart disease, involvement of first-degree atrioven-
tricular block, sinus bradycardia or right bundle branch
block of His and were not receiving treatment or medi-
cation. ECG signals were recorded at a frequency of 500
Hz with a resolution of 12 bits.

2.2. Data preprocessing

Obtaining the QRS complexes from the ECG was per-
formed with the Pan-Tompkins [13] algorithm, then gen-
erating the 288 5-minute RR tachograms for each subject
from the database. In addition, a filter used in [8] was im-
plemented to remove noise.
Considering that we are working with time series data, Ap-
proximate Entropy (ApEn) was applied to each 5-minute
RR subsegment of each subject according to the definition
given by Pincus [14], where if the time series data consists
of N elements:

ApEn(m, r,N) = − 1

N −m

N−m∑
i=1

log

(
Ai

Bi

)
(1)

where m is the embedding dimension, r is a threshold and
Ai and Bi are the proximity measures between the embed-
ding vectors in m and m+ 1 dimensions respectively.

After testing values of m from 1 to 4, and r from 10 to
50 standard deviation, the parameters m = 2 and r = 40%
of standard deviation were finally selected because of the
good discrimination they achieved among the three groups
and each group with another.

Finally, some missing ApEn data (produced by noise fil-
tering and the database itself) were interpolated using the
Matlab function fillgaps in order to predict missing data in
a series. Thus, each subject was characterized by a com-
plete record of 288 ApEn values.

2.3. Network architecture and data aug-
mentation

For the purpose of this work, first, all data were ran-
domly divided as follows: 70% of 292 subjects formed the
training set and the other 30% the test set. In addition,
a validation set was considered and involved 30% of the
training set during the network training phase.

A Densely Connected Neural Network was imple-
mented in Pyhton, using the Keras and Scikit-learn envi-
ronments, with a sequential model and dense layers. 288
ApEn values were the input layer nodes, which were pre-
viously standardized. The outputs correspond to the three
groups in which they are located: Control, CH1 and CH2.

The Adam optimizer was used with a small learning
rate, the loss function was categorical cross entropy, and
the activation function is chosen according to the training,
except in the last layer, where it was softmax. All other
hyperparameters are selected according to the evolution of
the network training too.

To increase the performance of the model, data augmen-
tation techniques were proposed, because of their ability to
increase the generalization capacity of machine learning
models, to increase the samples (subjects) of the training
set. Most of these are inspired by image recognition. Thus,
scaling and jittering algorithms were selected as augmen-
tation algorithms because of their great ability to preserve
the temporal pattern of the data [15].

3. Results

An optimal 3-hidden layer architecture was found with
15, 10 and 8 neurons respectively. The activation func-
tion was sigmoid in all layers except the output layer. The
Adam optimizer was used with a learning rate of 0.002,
200 was the epoch limit and the batch size was 10. Also,
overfitting was controlled thanks to the earlystopping func-
tion implemented to stop the model training when the val-
idation loss does not reach lower values in 5 consecutive
epochs.

To visualize the performance of the model, first, without
having implemented data augmentation, Figure 1 shows
the confusion matrix. With it, the classification results of
our model were as follows: for the Control group we ob-
tained an accuracy of 0.889, recall of 0.960 and F1-score
of 0.923. For the CH1 group, the accuracy was 1.000, re-
call 1.000 and F1-score 1.000. And for the CH2 group the
results were 0.969 for precision, 0.912 for recall and 0.939
for F1-score. The accuracy of the model was 95.5%, and
the overall weighted precision was 95.6%.
To observe the success rate, the receiver operating charac-
teristic curve (ROC curve) was plotted. being a multi-class
classification, an extended version of the ROC curve had to
be applied with the micro and macro averaging algorithm



Figure 1. Confusion matrix without data augmentation

in the scikit-learn library.

Figure 2. ROC curve without data augmentation

Thus, Figure 2 shows one curve for each group (one ver-
sus all) and two general curves for the entire classification.
As all AUC values are very close to 1, a good model per-
formance is confirmed despite the fact that no regulariza-
tion or data augmentation technique was used; however, as
these are neural networks, the percentage can be improved.

By applying the data augmentation techniques men-
tioned above, but keeping the same network architecture,
rows (patients) were added to the standardized ApEn ma-
trix of the original training set. In this sense, the network
was trained with 3 times the size of the original training set
(three times the number of patients). Data augmentation
was not applied to the test set to evaluate the performance
of the network with original data.

The confusion matrix, using the same data split as above
(70% training and 30% test) is plotted in Figure 3. From
it it can be seen that all evaluation metrics (precision, re-
call and F1-score) for each group and overall, were unity,
thus having 100% overall model accuracy and precision,
demonstrating an excellent classification result. This is
validated by the multiclass ROC curve (Figure 4), whose
AUC values were exactly unity.

Figure 3. Confusion matrix with data augmentation

Figure 4. ROC curve with data augmentation

Also, taking into account that with the increase of data
the number of patients with which the network trains is nu-
merous, it was possible to vary the division of the original
data sets (training and test), whose general classification
metrics are summarized in the table 1, finding that the ac-
curacy of the model is higher than 90% even when only
30% of the original patients are used for training.

Table 1. Overall evaluation metrics, using data augmenta-
tion for different original patient divisions

Test set Accuracy Overall
precision

Weighted
overall preci-
sion

30% (88 subjects) 100.0% 100.0% 100.0%
40% (117 subjects) 98.3% 98.1% 98.3%
50% (146 subjects) 97.3% 97.1% 97.3%
60% (176 subjects) 94.9% 94.8% 95.0%
70% (205 subjects) 90.7% 90.5% 90.7%

4. Discussion and conclusions

Approximate Entropy proved to be a powerful statisti-
cal tool to characterize and discriminate time series, since,
considering the differences in the circadian profiles ob-
tained through its use among the three groups of the



database, by implementing a deep neural network to clas-
sify them, a good performance of the model was obtained
without using regularization techniques or data augmen-
tation algorithms. Accuracy values higher than 88% were
achieved for all groups, according to all the evaluation met-
rics considered, as well as an accuracy of 95.5% and an
overall precision of 95.6%. However, despite obtaining
comparable results to those of previous research based on
clinical and sociodemographic data for the prediction of
Chagas disease [11], we chose to implement data augmen-
tation algorithms because of the importance of diagnostic
optimization for obtaining reliable and accurate results.

With the data augmentation, scaling and jittering algo-
rithms, it was possible to enrich the training data set and
improve the predictive capacity of the model, obtaining
an excellent classification capacity: 100% accuracy and
precision for the same division of the original data. Like-
wise, by training with three times as many patients from
the training set, it was possible to decrease the number of
original patients used for training, obtaining a classifica-
tion accuracy of more than 90% even when only 30% of
patients from the original database were used. This result
clearly reflects the relevance of data augmentation in neu-
ral networks when working with databases that present a
limited number of samples, and at the same time, supports
the use of this technique in time series analysis.

Early and non-invasive identification of patients with
Chagas disease who are not yet symptomatic (CH1 group)
is crucial for successful treatment and improvement in the
quality of life of patients. In this regard, the proposed ap-
proach is presented as a highly reliable and low-cost diag-
nostic tool. The application of this approach could be a
promising alternative to improve medical care and disease
management, which can have a significant impact on the
health of the general population.
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