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Abstract 

Objective: For the George B. Moody PhysioNet 

Challenge 2023. We aim to predict neurological recovery 

from coma after cardiac arrest (CA) by using multi-

domain feature extraction methods and the ensemble 

model of machine learning (ML) classifiers. 

Methods: We employ methods such as wavelet packet 

transform (WPT) and short-timed fourier transform 

(STFT) to extract features from electroencephalogram 

(EEG) signals. Gradient boosting (GB), random forest 

(RF), and constructive covering algorithm (CCA) are 

selected to build models for predicting neurological 

recovery conditions. 

Results: Our team AHU lab, obtained a Challenge 

score of 0.418 (ranked 37th out of 62 teams) on the public 

validation set and 0.238 (ranked 33th out of 36 teams) on 

the hidden test set. 

Conclusions: We propose a prediction algorithm that 

combines multiple feature extraction and classifiers for 

predicting results and providing specific suggestions 

based on EEG analysis. 

 

 

1. Introduction 

Cardiac arrest (CA) is a severe cardiac condition that 

often leads to loss of consciousness and poses a threat to 

life. With over six million occurrences of CA worldwide 

each year, the survival rate remains below ten percent. 

Therefore, predicting the probability of awakening after 

CA is crucial [1]. Patient biometrics such as blood 

pressure, respiratory rate, body temperature, and blood 

oxygen saturation are related to this condition, and the 

continuous evolution of electroencephalogram (EEG) 

signals over time can provide additional predictive 

information. However, analyzing and processing these 

signals effectively is essential to establish a high-quality 

predictive model. 

This study aims to utilize EEG data features as inputs 

for the model and employ machine learning (ML) 

techniques to predict the patient’s neurological recovery 

level [2]. The focus is on using a constructive cover 

algorithm (CCA) as the predictive classifier for the 

cerebral performance category (CPC). Experimental 

results demonstrate the effectiveness of this classifier in 

the prediction process, with a high overall model 

prediction accuracy. 

 

2. Methods and Materials 

As shown in Figure 1, the methods used in this study 

include feature extraction of EEG signals, feature 

selection, and dimensionality reduction using the ReliefF 

feature selection algorithm and principal component 

analysis (PCA). Building an appropriate classification 

algorithm to achieve prediction. 

 

2.1. Dataset and Pre-processing 

The challenge data was collected from seven academic 

hospitals in the U.S. and Europe, including 1020 patients 

[3]. Each patient had hours of continuous EEG data 

recording, which was divided into three sets: training, 

validation, and test sets[4]. 

We performed the following preprocessing steps. 

Firstly, interpolation was applied to the data from 19 

channels (Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, T5, 

T6, P3, P4, O1, O2, Fz, Cz, Pz) to obtain 18 channels 

differences (Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-

T3, T3-T5, T5-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-

F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz) as the raw data. 

Secondly, the raw data was filtered using bandpass filters 

(0.5-30Hz) and resampling to 128 Hz. By differentiating 

the electrodes and using bandpass filters, they can help 

remove noise, highlight local variations, and reduce the 

correlation between electrodes, thereby improving the 

quality and interpretability of EEG signals. 

 

2.2. Feature Extraction 



The common EEG features can be mainly categorized 

into time-domain, frequency-domain, and time-frequency 

domain features. Time-domain features are the most 

intuitive and easily obtained features in EEG signals.  We 

use an 18 × n (relying on the last hour of patients’ EEG 

signal length) array that has been preprocessed as the 

original data, and feature extraction is performed in the 

order of each row. We compute the mean, standard 

deviation, peak value, skewness, and amplitude 

differences between the electrodes of each row. 

Frequency-domain features involve transforming the 

original time-domain EEG signal into the frequency 

domain and extracting features from it. We select delta 

(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 

Hz) frequency bands. The time-domain signal is 

transformed into these four frequency bands, and 

corresponding features are extracted. We calculate the 

energy ratio of different frequency bands, average power, 

power spectral density and so on. 

Time-frequency features involve transforming the 

time-domain signal using short-time fourier transform 

(STFT) and wavelet packet transform (WPT) [5]. Unlike 

the previously mentioned method of extracting features 

row by row, when using WPT and STFT, we transform 

the preprocessed data 18 × n, which takes all of it as input. 

In this way, the 18 electrode differences are directly taken 

as the vertical axis, while the time series is taken as the 

horizontal axis. This transformation can better represent 

the local characteristics of the EEG signal in a more 

comprehensive manner. Besides, we selected db3 wavelet 

as the basis function and performed 5 levels of 

decomposition to extract features such as energy, power, 

decomposition coefficients, and frequency band ratios. 

Finally, we utilized the Tsfresh package [6] to 

automatically extract features from the EEG data. These 

features are mostly made of statistical features (such as 

mean, variance, maximum value), kurtosis, skewness, 

autocorrelation, etc. 

In total, we extracted 808 features from the data, 

including 107 time-domain features, 354 frequency-

domain features, 157 time-frequency domain features, 

and 190 features extended by Tsfresh. These features will 

serve as inputs for further classification and prediction 

models. 

 

2.3. Feature Selection 

Due to the long duration of the EEG data used for 

training, it is necessary to select features that are highly 

correlated with the prediction of CA. We employ two 

methods for feature selection. 

1. After the previous step, we get an array of n 

(depending on the amount of data for training) × 808 with 

labels, we use the ReliefF feature selection method, 

which calculates weights based on the differences 

between features, to identify the features that better 

reflect their importance. At last, we reduced 30 percent of 

features to get a n × 565 reshaped array for training. 

2. Utilizing feature dimensionality reduction to project 

the features onto dimensions with higher weights related 
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Figure 1. Procedure of the Neurological Recovery Prediction



to the target [7]. We processed 808 features using PCA 

(n_components = 600) and used the fit function before the 

prediction of the test set. PCA finds a new set of features 

through linear transformations that maximally preserves 

the information in the original data while reducing 

redundancy in the features. 

 

2.4. Classifier and Evaluation Metrics 

We utilized the PyCaret low-code platform, which 

allows for quick deployment of models and automates the 

machine learning process [8]. We input the tagged data 

after PCA processing and performed 10-fold cross-

validation to select GB and RF as some of the classifiers 

with better performance [9]. The detailed test results are 

shown in Table 1, which is ranked by Area Under the 

Curve (AUC).  

CCA is based on the idea of M-P neurons and achieves 

coverage by utilizing spherical neighbourhood coverage 

of samples. This algorithm maps the samples onto the 

surface of a sphere in an n-dimensional space and 

increases the number of hidden layer neurons to achieve 

coverage [10]. It uses inner products instead of Euclidean 

distance and generates test cases with high coverage rates. 

 

Table 1. The Performance of Model 

 

Model AUC Accuracy Recall Precision 

GB 0.7446 0.6939 0.8362 0.7244 

CatBoost 0.7181 0.6690 0.8243 0.7035 

AdaBoost 0.7150 0.6665 0.7842 0.7190 

XGBoost 0.7061 0.6540 0.7647 0.7096 

LightGBM 0.7046 0.6565 0.7681 0.7102 

LDA 0.7006 0.6740 0.7765 0.7280 

ET 0.6775 0.6514 0.8326 0.6830 

RF 0.6423 0.6490  0.8683 0.6704 

QDA 0.5545 0.4484 0.2967 0.5986 

DT 0.5496 0.5735 0.6448 0.6699 

LR 0.5346 0.6266 1.0000  0.6266 

NB 0.5214 0.4562 0.3766 0.6276 

KNN 0.5049 0.5890 0.7765 0.6428 

MLP 0.5020 0.5041 0.5048 0.4141 

SVM 0.5000  0.6266 1.0000 0.6266 

GPC 0.5000 0.3734 0.0000 0.0000 

DC 0.5000 0.6266 1.0000 0.6266 

 

 As shown in Figure 2, there are a total of n neurons in 

the input layer, representing each dimension of the 

sample data.  

For example, 𝑥𝑖
1 represent the First-dimensional data 

for the sample 𝑥𝑖 . The neurons of the hidden layer 

represent the coverage. Such as 𝑐𝑖
𝑗
 representing the j th 

coverage of the i th sample. The output layer aggregates 

the neurons in the hidden layer that belong to the same 

category. Each neuron represents a group of covers 

belonging to the same category. For example, 𝑂𝑡  presents 

the output for the t th class sample. 

The evaluation metric is the AUC. AUC is defined 

as the area enclosed by the axis under the Receiver 

Operating Characteristic curve (ROC). ROC represents 

the relationship between the True Positive Rate (TPR) 

and False Positive Rate (FPR) at different classification 

thresholds. The AUC value ranges from 0 to 1, which is 

defined in Eq. 1. 

=
1

0
)( dxxROCcurveAUC (1)

 

AUC of 0.5 indicates random guessing, AUC > 0.5 

suggests better than random guessing, and AUC close to 

1 indicates excellent predictive performance with perfect 

class distinction. 

 

3. Results 

In this experiment, we focused only on the data from 

the last hour as the raw data of the signals. We tested all 

combinations locally and found that the combination of 

GB and CCA produced the best results, which ranked by 

scores, are shown in Table 2. The classifiers CCA and 

GB exhibit excellent performance in terms of overall 

performance and the most important scoring metric

（0.2956）. 
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Table 2. Performance of different 

combinations of classifiers 

 

Classifier Score Accuracy MSE MAE 

CCA, GB  0.2956 0.6773 4.5274 1.6593 

CCA, RF 0.2212 0.6703 3.6833 1.6503 

CCA 0.1909 0.6153 5.5879 1.7527 

CCA, RF, GB 0.1379 0.6758 4.0300 1.7000 

RF 0.1376 0.6593 3.4646 1.5704 

GB, RF 0.1196 0.6483 3.5583 1.4586 

GB 0.1176 0.7032 4.5824 1.2857  

 

The Challenge scores on both the public training set, 

hidden validation set, and hidden test set that our final 

selected entry obtained are shown in Table 3. 

 

Training Validation Test Ranking 

0.798 0.418 0.238 33/36 

Table 3. The official Challenge score for our final 

selected entry (team AHU lab), including the ranking of 

our team on the hidden test set. We used 5-fold cross-

validation on the public training set, repeated scoring on 

the hidden validation set, and one-time scoring on the 

hidden test set. 

4. Discussion and Conclusions 

This study proposes a novel method that combines 

multiple feature extraction techniques and integrates 

multiple classifiers for predicting neurological recovery 

after CA. In the testing phase, only the time domain 

features scored 0.358 on the public validation set, which 

rose to 0.379 after adding the frequency domain features, 

and finally reached 0.418 after adding the time domain 

decomposition. It can be seen that the time-frequency 

domain feature has a great weight in the signal processing 

of EEG. Meanwhile, the increase in the number of 

channels can also lead to an increase in the score. When 

we changed the number of channels in the demo code 

from 4 to 18, the score increased from 0.179 to 0.358. 

Although our model’s performance on the public training 

dataset is not satisfactory, we can see from Table 2 that 

the predictive power of CCA far exceeds that of RF and 

GB, because CCA can introduce diversity by gradually 

adding and adjusting classifiers, avoiding the problem of 

relying too much on a single classifier. 

Besides, ECG analysis can provide an assessment of 

the degree of ischemia and heart function, correlating 

with the level of nerve recovery, and the ability to predict 

it may be better if ECG signals can be processed 

accordingly. 
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