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Abstract

Introduction. Research on improved methods for the
inverse problem in cardiology and electrophysiology is ac-
tive today. Recently, the use of machine learning meth-
ods has been proposed, allowing us to consider the bio-
physical equations of the problem. In this work, we pro-
pose to explore improvements in using kernel methods
for estimating the inverse problem, with kernel given by
the Green’s function for the infinite homogeneous poten-
tial and with recently proposed cross-validation strate-
gies for least squares estimation. Materials and meth-
ods. Three algorithmic solvers were implemented, namely,
least squares with Zero-Order Tikhonov (ZOT) regulariza-
tion, Support Vector Regression (SVR), and constrained L2
(CL2) optimization. The estimation of the transmembrane
action potential from the extracellular potential was stud-
ied in 1D (fiber) and 2D (tissue) simulations. The reaction
was generated using the Luo-Rudy model. Experiments
and results. The ZOT method was the most unstable. The
SVR method provided biased results, although intermedi-
ate and acceptable accuracy, except at the edges of spa-
tial action potentials. The CL2 method provided better
performance under certain conditions of the implemented
cross-validation procedure. Conclusions. Kernel meth-
ods, with appropriate algorithmic formulations and elabo-
rated cross-validation criteria, can provide an alternative
way to estimate the cardiac inverse problem.

1. Introduction

Diagnosing Cardiovascular Diseases of electrophysio-
logical origin rely on invasive approaches that pose a sig-
nificant drawback to the patient. For instance, electro-
physiological studies (EPS) reach the inner heart using a
catheter, measuring the heart proximal extracellular poten-
tial. Nevertheless, EPS does not provide measures regard-
ing the transmembrane potential of heart cells.

Accurately estimating the transmembrane potential
from proximity extracellular potential is important for re-
vealing the underlying mechanisms of cardiovascular dis-
eases such as arrhythmias. Current research on these meth-
ods incorporates regularized estimation algorithms [1] and
even deep learning approaches [2]. Nevertheless, cross-
validation techniques have not been combined with estima-
tors using kernel methods. The objective is to improve cur-
rent cross-validation techniques and apply them to kernel-
based estimation methods, where the kernel is given as
Green’s function accounting for the underlying biophysi-
cal information of the problem being considered [3].

2. Materials and Methods

We present next the mathematical formulation of the
electrocardiographic forward and inverse problems. Addi-
tionally, models for inverse estimation based on the Lapla-
cian kernel are introduced, along with the free parameter
search method based on cross-validation.

Electrophysiological simulation models often provide
mathematical representations of the electrical activity in
cardiac cells. In this study, the transmembrane potential
is simulated using the Luo-Rudy model, which forms the
basis for resolving the forward problem and evaluating the
presented inverse estimating techniques [4].

2.1. Bioelectric Equations and Notation

The forward problem represents how the extracellular
potential is generated due to the mixed contribution of the
transmembrane potential of each cardiomyocyte. The con-
duction volume can be considered to have a 3D geometry
with several conductivities. We consider the 1D and 2D
tissue equations and assume a homogenous conductivity
medium. The spatial equation for a homogeneous volume



conductor with conductivity σ0 is

ve(r) =
1

4πσ0

∫
S′

∇2vm (r′)

|r − r′|
dS′, (1)

where vm is the source potential at the surface S′ and ve is
the potential field, considered at the immediate epicardial
surface (tissue plane), and r (r′) is the position vector of a
field point [5].

Discretization of the involved surfaces is often per-
formed using the Finite Element Methods (FEM) tech-
niques, which yield an implicit equation to calculate the
extracellular potential. The bioelectrical problem can be
subsequently summarized on transfer matrix T , combining
the spacial Laplacian matrix L and the inverse distances
matrix H discretized from equation (1), and this allows
the forward problem reformulation in vector-matrix form,

T = LH =⇒ ve = Tvm, (2)

where ve and vm denote the vector form for the extracel-
lular and transmembrane potentials, respectively. The size
of the T matrix depends on the number of sensor elements
and source elements on the considered surface. In this set-
ting, the transmembrane potential estimation problem can
be defined as the prediction of the transmembrane poten-
tial given a known forward operator T and measurement
of extracellular potential ve [6].

2.2. Laplacian Kernels and Generalization

We selected three algorithms that rely on the Laplacian
kernel, and they are presented in the following section.
Note that the model contains the underlying biophysical
problem rather than being a blind learning model.

The Zero-order Tikhonov (ZOT) method has been
widely employed for solving the inverse problem, and it in-
volves using the least squares (LS) model along with regu-
larization techniques to stabilize ill-conditioned problems.
The optimization problem can be stated as

v̂m(γ) = argmin
vm

{
∥ve − Tvm∥2 + γ ∥vm∥2

}
, (3)

where regularization parameter γ provides smoothness to
the solution. The solution has a closed-form equation
given by

v̂m(γ) =
(
T⊤T + γ2R⊤R

)†
T⊤ve. (4)

The ZOT model is used here as a baseline to compare the
rest of the proposed models.

On the other hand, the use of kernel methods to address
non-linear regression problems constitutes a promising ap-
proach as it provides sparse and implicit regularized so-
lutions even on different noisy conditions [7]. In some

symmetric conditions, the T matrix can be symmetric and
positive-definite to be used as the Gram matrix associated
with a kernel function and mapping function ϕ, satisfying
Mercers Kernel conditions. This kernel can also be seen as
Green’s function for the infinite homogeneous conductor
problem [3], and this approach enables the use of Support
Vector Regression (SVR) as a machine-learning-based es-
timation technique with matrix T as a precomputed kernel.
The ε-SVR represents a regression of the transmembrane
potential in an unknown space where the relation with the
extracellular potential is linear, given by

ve (xi, yi, z0) = ⟨w, ϕ [vm (xi, yi, 0)]⟩ , (5)

where w is a nonlinear regressor in a Reproducing Kernel
Hilbert Space, and ϕ is a nonlinear mapping from the trans-
membrane potential to that space. The ε-SVR is suitable
to address this estimation problem, as it can be set as an ε
parameter that depends on the magnitude of the residuals,
as well as other free parameters in the SVR methodology.

Finally, we stated a constrained L2 (CL2) formulation
of the problem by stating the inverse estimation problem as
an optimization problem with a convex objective function
and a set of constraints, as minimizing

∥ve − Tvm∥2 + γ ∥vm∥2 (6)

subject to vm ≥ vr, where vr denotes the resting mem-
brane potential. The introduction of constraints to the
model serves to minimize the bias while simultaneously
restricting the optimization problem to positive values.

Estimation methods in this context frequently have to
deal with several signals in the presence of various noise
sources, needing stabilization of their solution through the
use of so-called regularization techniques. There are nu-
merous approaches to regularizing the inverse problem in
the literature. However, few sample studies implement
cross-validation strategies to search the free parameters
[8]. An out-of-sample cross-validation strategy adapted
from the one proposed in the previously cited work was
used to search the free parameters ε-SVR, as well as the γ
parameter in ZOT and CL2 algorithms.

3. Experiments and Results

This section presents the performance of the proposed
methods on simulated data under various noise and sam-
pling conditions.

In space, the experimental data presented a uniform or
non-uniform sampling. The uniformity occurs when the
nodes, either in 1D or 2D, are equidistant. For the non-
uniform case, a uniform random variable U(0,∆sn) was
added to the position of the nodes from the uniform case.
Where ∆s is the uniform internodal sampling distance, and



MAE
Uniform sampling (n = 0) Non-uniform sampling (n = 0.75)
10 dB 25 dB 40 dB 10 dB 25 dB 40 dB

SVR model Training Data 49.20 38.29 38.33 151.75 44.66 8.13
Complete Data 73.48 44.11 37.17 607.75 137.02 47.21

CL2 model Training Data 22.86 6.14 1.13 15.86 5.11 1.32
Complete data 14.42 5.92 2.09 16.88 5.19 3.13

ZOT model Training data 44.82 11.68 1.95 25.12 5.90 3.44
Complete Data 45.37 64576.64 47.50 67.87 12.06 15.00

(a)

MAE
Uniform sampling (n = 0) Non-uniform sampling (n = 0.75)
10 dB 25 dB 40 dB 10 dB 25 dB 40 dB

SVR model Training data 31.00 22.28 22.49 16.89 23.77 40.51
Complete data 54.33 43.33 35.00 53.18 72.05 86.94

CL2 model Training data 5.70 0.89 0.21 6.19 0.82 0.16
Complete data 16.11 4.97 1.81 20.10 10.65 5.55

ZOT model Training data 6.26 1.90 0.21 3.93 0.95 0.36
Complete data 146.72 28.37 17415.96 170.25 448.51 39.60

(b)

Table 1: MAE evaluated for each model across a range of SNR scenarios, spanning from 15 dB to 45 dB, under both
uniform and non-uniform conditions on 1D with different data split, (a) 50% data in training and (b) 20% data in training.
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Figure 1: Predictions on the best performing conditions according to Table (1), for SVR (a), CL2 (b), and ZOT (c) models.

MAE Uniform sampling (n = 0)
20 dB 30 dB 45 dB

CL2 model Training data 19.02 7.81 2.37
Complete data 90.21 32.50 18.22

ZOT model Training data 25.74 12.32 5.78
Complete data 55.55 33.35 26.60

Table 2: MAE evaluated for each model across a range
of SNR scenarios, spanning from 15 dB to 45 dB, under
uniform conditions on a plane.

n is a parameter controlling stochastic behavior. Further-
more, we evaluated the estimators under various noise cir-
cumstances to identify the most robust one. The introduced
noise is measured with the signal-to-noise ratio (SNR) in
decibels (dB).

The 1D experiments were performed on a fiber with 601
cells with a length of 10 cm. Two data distributions were
tested, one with 50% of data in the training set and the
other with 20% of data in the training set. The results are
depicted in Table (1), showing that the CL2 model was the
best performing overall, followed by the ZOT model and
finally by the SVR model. The SVR model provided ac-
ceptable accuracy but biased predictions, especially at the
border of the spatial action potential. Qualitative results of
the best performing conditions are shown in Figure (1).

The 2D experiments were performed on a plane with 10
000 cells with a 3x3 cm surface, and the dataset is divided
into 50% train and 50% test. The findings are presented
in Table (2), which exhibits that the CL2 model outper-
formed the other models in all the measures. Moreover,
the qualitative outcomes of the predictions on the optimal



Figure 2: Predictions from models for training data on the best working conditions according to Table (2), with a low level
of noise, and the cells on the plane are equidistant.

conditions are depicted in Figure (2). The SVR model was
not used because the even more severe ill-conditioning of
the problem in 2D did not allow a search for free parame-
ters, so it represents ongoing work.

4. Conclusions

The presented study provides evidence that kernel meth-
ods offer an alternative approach to estimating the car-
diac inverse problem within a homogeneous and infinite
conductor when utilized with cross-validation techniques
with the inclusion of biophysical equations. The ill-
conditioning of the inverse problem deteriorates the per-
formance of the proposed algorithmic solvers under cer-
tain circumstances, including scenarios involving signif-
icant noise, non-uniform sampling, or high-dimensional
geometries. Further studies will address the problem in
scenarios of realistic complexity and geometries.
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