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Abstract

The conduction properties of the atrioventricular (AV)
node have a significant impact on heart rate during perma-
nent atrial fibrillation (AF), and can be modulated through
the use of β-blockers or calcium channel blockers. These
drugs have different physiological effects and are often se-
lected empirically. Hence, an improved understanding of
how these drugs affect the AV node conduction properties
may contribute to personalized treatment of AF.

We propose a novel methodology for estimating the re-
fractory period and conduction delay dynamics of the fast
and slow pathways of the AV node from 24-hour ambulatory
ECG recordings. Our approach comprises a network model
of the AV node, a problem-specific genetic algorithm, and
an approximate Bayesian computation algorithm for esti-
mating the posterior distribution of the AV node properties.

We analyzed 24-hour ambulatory ECG recordings at
baseline from 51 patients with permanent AF. Interestingly,
a moderate correlation between the short-term variabil-
ity in the refractory period for the fast pathway and re-
duction in heart rate during treatment with metoprolol
(ρ = 0.48, p < 0.005) was found. Thus, the proposed
methodology enables individualized characterization of the
AV node and can potentially assist in treatment selection.

1. Introduction
Atrial fibrillation is the most common sustained cardiac ar-
rhythmia and significantly burdens patients and the health-
care system at large [1]. During AF, the electrical activity
in the atria is highly disorganized, leading to rapid and ir-
regular contraction of the atria. The ventricles are partly
protected from rapid atrial impulses by the atrioventricular
node due to its ability to block and delay incoming im-
pulses.

Nevertheless, the blocking and delay in the AV node are
often insufficient to maintain a healthy heart rate. Hence,
treatment with rate control drugs modifying the AV node

conduction in order to lower the pulse is common for pa-
tients suffering from permanent AF. However, the treat-
ment choice between the two recommended drug types –
β-blockers and calcium channel blockers – is made empiri-
cally [1]. The two drug types have different physiological
effects, hence treatment with different drug types can have
different outcomes on an individual level. Thus, individual
characterization of the AV node can potentially assist in
treatment selection.

We have previously proposed a network model of the AV
node including the refractory period and conduction delay
in the fast pathway (FP) and the slow pathway (SP) [2], as
well as a framework for estimating the model parameters
during 24 hours using non-invasive data [3]. However, the
interpretation of the AV node assessment was limited by
the number of model parameters and their intrinsic complex
dependencies. For use in a clinical context, the outcome
needs to be readily interpretable by medical professionals.
In addition, only one estimated value was produced, limit-
ing the understanding of the estimates.

In this study, we propose a novel methodology for esti-
mating the refractory period and conduction delay of the
fast and slow pathway of the AV node continuously over
24 hours for 51 patients during baseline using the network
model. The estimates comprise samples from the Bayesian
posterior distribution of the AV node properties, hereafter
denoted the posterior. This analysis enables the identifica-
tion of correlations between the estimated AV node prop-
erties for a patient and their response to pharmacological
interventions with four different rate control drugs.

2. Method
The method for assessing the refractory period and conduc-
tion delay in both pathways of the AV node can be divided
into four stages: (1) ECG processing to derive RR inter-
val series and an atrial fibrillatory rate (AFR) (Sec. 2.1);
(2) Rough model parameter estimation using a problem-
specific genetic algorithm (GA) (Sec. 2.3.1); (3) Computa-



tion of the posterior using approximate Bayesian computa-
tion (ABC) (Sec. 2.3.2); (4) Translation from the original
model parameters (θ) to estimates of the refractory period
and conduction delay (Φ) (Sec. 2.3.3).

2.1. ECG processing
We analyzed 24-hour ambulatory ECGs from 60 patients
with permanent AF from the RATAF study [4]. Data were
obtained during baseline and treatment with verapamil and
diltiazem (calcium channel blockers) and metoprolol and
carvedilol (β-blockers).

The RR interval series is extracted from the ECG for
each patient and segmented into ten-minute intervals with
a five-minute overlap. The f-waves are extracted from the
ECGs using spatiotemporal QRST cancellation and used to
estimate the AFR trends by a hidden Markov model-based
approach [5]. The AFR trends are divided into segments
corresponding to those of the RR interval series. Segments
with excessive noise, preventing beat detection and AFR
trend estimation, are excluded from further analysis; result-
ing in 51 patients with RR interval series and AFR trends
with a duration of over 20 hours. In addition, the change
in the 24-hour average heart rate (∆HR) in response to
treatment with all four treatments is calculated.

2.2. Network Model of the AV Node
The model of the AV node is divided into the FP and the SP,
where each pathway comprises 10 nodes corresponding to
a localized section of the AV node [2]. The pathways are
connected by a coupling node, representing the Bundle of
His and the Purkinje fibers, as illustrated in Figure 1. The
input to the model, representing the atrial impulse arrival
time, is created by a Poisson process with mean arrival
rate λ. Each node will either block an incoming impulse
– if the node is in its refractory state – or transmit it to
all adjacent nodes with an added conduction delay. The
refractory period (Ri(n)) and conduction delay (Di(n)) for
node i are updated for each incoming impulse n according
to Equation 1, 2, and 3.

Ri(n) = Rmin +∆R(1− e−t̃i(n)/τR) (1)

Di(n) = Dmin +∆De−t̃i(n)/τD , (2)

t̃i(n) = ti(n)− ti(n− 1)−Ri(n− 1), (3)

Here, t̃i(n) is the diastolic interval preceding impulse n and
ti(n) is the arrival time of impulse n at node i. Additionally,
when t̃i(n) is negative, the node is refractory and will block
incoming impulses. The refractory period and conduction
delay are thus defined by Rmin, ∆R, τR, Dmin, ∆D, and
τD; which are assumed to be identical for the nodes in the
respective pathway. This results in the 12 model parameters
θ = [RFP

min, ∆RFP , τFP
R , RSP

min, ∆RSP , τSP
R , DFP

min,
∆DFP , τFP

D , DSP
min, ∆DSP , τSP

D ]. The refractory pe-
riod in the coupling node is fixed to the mean of the ten

shortest RR intervals in the current data, and its conduction
delay is fixed at 60 ms.

Figure 1: A schematic representation of the network model
with arrows indicating impulse conduction direction, di-
vided into the SP nodes (red), FP nodes (green), and the
coupling node (yellow).

2.3. Parameter estimation
The mean arrival rate for the Poisson process λ and the
model parameters θ are estimated for each ten-minute seg-
ment. The mean arrival rate λ is estimated as the mean of
the AFR trend in each segment, and θ is estimated using a
problem-specific GA together with an ABC algorithm.

An error function (ϵ) based on the Poincaré plot, i.e., the
scatter plot of successive pairs of RR intervals, is used to
quantify the difference between the extracted RR interval
series in each segment and the model output. The extracted
and simulated RR intervals are placed in two-dimensional
bins centered between 250 and 1800 ms with a width of
50 ms, resulting in K = 961 bins. The error function is
computed according to Equation 4,

ϵ =
1

K

K∑
k=1

(
xk − 1

tnorm
x̃k

)2

√
xk

, (4)

where x̃k and xk are the numbers of RR intervals in the
k-th bin of the simulated and observed data, respectively.
Further, tnorm is used to normalize the simulated data to
match the length of the ten-minute-long observed data.

2.3.1. Genetic algorithm
A problem-specific dynamic GA based on the work in [3]
is used to get the rough estimate of θ for initialization in
the ABC algorithm. The GA uses a population of 300 in-
dividuals, where each individual is a vector of values for
θ. The algorithm uses tournament selection, a two-point
crossover, and creep mutation. To increase performance,
immigration through replacement of the least-fit individuals
in the population, as well as tuning the hyper-parameters
during the optimization, is performed. In addition, the num-
ber of generations the GA runs before moving to the next
data segment also varies during the optimization, ranging
from two to seven. For further details about the algorithm,
see [3].

2.3.2. Approximate Bayesian computation
To estimate the posterior (p(θ|RR(s), λ(s))) of θ knowing
the RR interval series (RR(s)) and λ(s) in a segment s, an



approximate Bayesian computation population Monte Carlo
sampling (ABC PMC) algorithm is used [6]. The posterior
for each segment is estimated individually by running the
ABC PMC using Np = 100 particles for eight iterations (j),
where each particle is a vector of values for θ. During each
iteration, each particle has a probability of being chosen
based on the covariance of the particles, and the chosen
particle is perturbed using a normal distribution to create a
proposal. If the proposal error ϵ is lower than a threshold
Tj , the proposal is accepted. The next iteration starts when
Np particles are accepted. The threshold is updated for
each new iteration based on the results from the GA, where
T1 is set to ϵ of the tenth fittest individual in the GA, T2 to
the eighth, T3 to the fifth, T4 to the third, and T5−8 to ϵ of
the fittest individual. The algorithm is sped up by utilizing
the GA results to create the initial population by sampling
twenty particles from five different normal distributions
in order to construct the initial population. The mean of
these distributions ranges from the first to the fifth fittest
individual in the GA, and the standard deviation for all
five distributions is set to the standard deviation of the 25
fittest individuals in the GA. For further details about the
algorithm, see [7].

2.3.3. Parameter reduction
The resulting 100 particles from the ABC PMC algo-
rithm are used as an estimate of the posterior of θ in
each data segment. The particles are used in the model
to simulate ten-minute-long segments of data, where all
Ri(n) and Di(n) for each pathway are stored. This thus
creates samples from a distribution of the refractory pe-
riod and conduction delay for each pathway and segment,
which we denote Φ̂(pat, s) = [RFP ,RSP ,DFP ,DSP ].
These correspond to a translation from the twelve model
parameters θ to the more interpretable AV node proper-
ties Φ̂. The distributions are quantified using the max-
imum of the empirical probability density function, as
well as the 5% and 95% credibility region limits; de-
noted as ϕ̂max(pat, s) = [RFP

max, R
SP
max, D

FP
max, D

SP
max]

and ϕ̂95,5(pat, s) = [RFP
95,5, R

SP
95,5, D

FP
95,5, D

SP
95,5] for each

segment s and patient pat, where 95 or 5 indicates the cred-
ibility region limit. In addition, the number of impulses
traveling through the two pathways (NFP , NSP ) is stored
and their ratio is denoted SPratio = NSP

NFP+NSP
.

3. Results
The resulting 24-hour trends of ϕ̂max(pat, s) and
ϕ̂95,5(pat, s) for one patient are shown in Figure 3. Inter-
estingly, RFP is very uncertain during nighttime, whereas
RSP is increased and its short-term variation is lowered
compared to daytime. In fact, the credibility region in RFP

and DFP is larger compared to RSP and DSP for this

patient, probably due to the smaller number of impulses
conducted through the FP, as seen in the SPratio.

The average values for ϕ̂max(pat, s) and the 90% cred-
ibility region for all patients are shown in Table 1. It is
evident that the credibility region for RFP is larger com-
pared to RSP , reflecting the results in Figure 3. In addition,
the credibility region for DFP in proportion to its mean
value is larger than that of DSP . Moreover, the mean ± std
for the SP ratio is 0.78 ± 0.10. Hence, the SP is on average
the dominant pathway, which is also reflected in the larger
credibility regions for the FP.

Table 1: The mean ± std of the average ϕ̂max(pat, s) and
the 95% credibility region for all patients, where the total
delay for all ten nodes in each pathway is presented

RFP (ms) RSP (ms) 10DFP (ms) 10DSP (ms)

ϕ̂max(pat, s) 934 ± 203 399 ± 95 76.9 ± 47.6 546 ± 126

ϕ̂95(pat, s)− ϕ̂5(pat, s) 687 ± 232 217 ± 114 304 ± 111 447 ± 103

The maximal distance between the cumulative distribu-
tion functions of the AV node properties for consecutive
segments, i.e. the Kolmogorov-Smirnov (KS) distance, is
used to quantify the variation in ϕ̂max(pat, s). The average
KS distance (∆KS) for each patient thus captures short-
time variability in the trends. Figure 2 shows the resulting
∆KS in RFP for all patients plotted against the treatment
effect ∆HR in response to the four rate control drugs.

According to the Henze-Zirkler test (p < 0.05), the data
in Figure 2 do not follow a normal distribution. Hence,
the Spearman’s rank correlation is used to study the rela-
tionship, showing that ∆KS at baseline has a moderate
correlation with ∆HR during treatment with metoprolol
(ρ = 0.47, p < 0.005), and no correlation during treatment
with verapamil, diltiazem, or carvedilol. This relation also
holds true for DFP , where a weak correlation could be seen
for metoprolol (ρ = 0.35, p < 0.05). More detailed results
are found in [7].

Figure 2: The relation between ∆HR and ∆KS for RFP .



4. Discussion
The results in Figure 2 show a significant correlation be-
tween the short-term variations in RFP and ∆HR for meto-
prolol, but not for verapamil, diltiazem, or carvedilol. From
a physiological viewpoint, β-blockers could be expected
to have a stronger effect on patients with large variations
in the AV node properties, indicating a strong influence
of the autonomic nervous system. This would explain the
high correlation between short-time variation and treatment
effect during treatment with metoprolol, as seen in Fig-
ure 2. The absence of a strong correlation for carvedilol
might be due to the low overall effect carvedilol showed
in the RATAF study, possibly due to its rapid elimination,
which has previously been pointed out as a limitation in the
RATAF study [8].

The advantage of estimating the posterior compared to a
single optimal value of the AV node properties can be un-
derstood by studying Figure 3, where RFP during the night
is very uncertain. Thus, the information in RFP during
the night is very limited. If the uncertainty was unknown,
these uncertain estimates could influence decision-making
or further analysis of the trends, hindering the usefulness
of the estimates.

Previous versions of the model and framework [3] esti-
mated the model parameters as opposed to the AV node
properties, limiting the interpretability. In contrast, this
work allows for a single estimate of the refractory period
and conduction delay for each time instance. Deriving inter-
pretable estimates is important for communicating analysis
results and opens up the possibility for a deeper understand-
ing of the AV node and its long and short-term variations.

The limited number of patients combined with the large
inter-individual variability restricts the generality of the
findings, thus more data are necessary to verify the results.
Additionally, it should be noted that the estimated conduc-
tion properties have not been validated against intracardiac
measurements, since no clinical standard exists to obtain
this information during AF.

5. Conclusion
A method for estimating 24-hour trends of the refractory
period and conduction delay in both pathways of the AV
node together with an estimate of the associated uncertainty
has been developed for patients with permanent AF.

Preliminary results suggest that short-term variation in
the fast pathway refractoriness and conduction delay may
be predictive of treatment outcome, indicating a possibility
for personalized assistance in treatment selection.
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Figure 3: The estimated refractory period (top) and conduction delay (middle) for ϕ̂max(pat, s) (dotted) and ϕ̂95,5(pat, s)
(filled) for the FP (blue) and SP (red), as well as the SP ratio (bottom) are shown for one example patient.
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