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Abstract 

Arrhythmia disease can be extremely damaging to the 
heart, and in severe cases can even lead to death. The ECG 
smart monitoring device is an effective way for detecting 
arrhythmia disease, and as wearable devices spreads, it 
also places certain requirement on lightweight arrhythmia 
detection algorithms. It is of great importance to 
implement an efficient arrhythmia detection algorithm 
with strong generalization performance. This work trains 
an arrhythmia detection model on the Georgia 12-lead 
ECG Challenge (G12EC) database and the China 
Physiological Signaling Challenge 2018 (CPSC2018) 
database using xResNet18 as the backbone network and 
momentum contrast learning as the framework, which 
allows contrast learning of positive samples and a large 
number of negative samples by introducing queue and 
momentum update encoder parameters to obtain a more 
comprehensive information representation. The model was 
pre-trained using the Georgia 12-lead ECG Challenge 
(G12EC) Database to obtain better characterization of 
initialization information and fine-tuned using the China 
Physiological Signal Challenge 2018 (CPSC2018) 
database to perform arrhythmia classification test. Among 
them, the CPSC2018 database contains arrhythmia ECG 
data in nine sample proportions in a balanced manner. 
During the pre-trained data enhancement, we added 
Gaussian noise of different strengths to the signal and 
compared the performance of the model in the results 
section. The experimental results showed that the model 
was effective with an AUC of 0.861, an Acc of 77.04% on 
the CPSC2018 database. 

 
 

1. Introduction 

In recent years, with the development of society, 
arrhythmia diseases have become more and more widely 
concerned. The number of deaths due to arrhythmia 
disease is increasing every year, making it critical to 
monitor, screen, and diagnose cardiovascular disease in 
real time through wearable ECG devices so that patients 
can detect the condition and receive treatment earlier. At 

this stage, arrhythmia recognition is mainly diagnosed by 
forming 12-lead ECGs from the body surface potential 
difference collected by 12-lead electrode wires placed at 
different locations on the body. Many methods for 
automatic arrhythmia diagnosis using DNNs already exist, 
which has led to considerable development of deep 
learning in the field of ECG [1-3]. 

With the development of Natural Language Processing 
(NLP) and Computer Vision (CV), the data feature mining 
capabilities and information characterisation capabilities 
of Deep Neural Networks (DNNs) have been further 
developed. Deep neural network models have been made 
more powerful in terms of data encoding and feature 
extraction by designing deeper network structures and 
using large training data sets [4]. However, the large 
amount of labelled data will consume huge amounts of 
manual labelling costs, making the training of models 
difficult. 

Past years, self-supervision has received much attention 
in Deep Neural Network. Self-supervised learning aims to 
mine unlabelled data for its own representational 
properties by designing auxiliary tasks that can be used as 
supervised information [5-7]. It generates supervised 
information from proxy tasks to pre-train large-scale 
unlabelled data, obtains a representational encoding of the 
data itself, and uses the pre-trained model for downstream 
tasks. Effectively, only a small number of labelled samples 
are needed for supervised training in the downstream task 
to achieve the performance of a strongly supervised 
training model. It is worth mentioning that contrast 
learning, as a type of self-supervised learning, has 
excellent performance in optimizing encoder feature 
extraction performance. It generates different views of the 
same data by means of data augmentation. Multiple views 
of the same data are considered as positive classes among 
themselves and negative classes among different data. 
Contrast learning maximizes the similarity between 
negative classes and minimizes the similarity between 
positive classes for the purpose of enhancing encoder 
representation. The representative methods in contrast 
learning are SimCSE [8], SimCLR [9], CMC [10], CPC 
[11], BYOL [12] and momentum contrast (MoCo) [13]. 
MoCo transforms the contrast similarity problem into a 
query and key query problem, and proposes the use of 



queue to store key values combined with momentum to 
update the encoder, which solves the problem of large 
amount of data required for contrast learning that is 
difficult to train, and fills the gap between unsupervised 
learning and supervised learning. For 12-lead ECG, the 
cost of manually annotating ECG data is much higher than 
for other types of data. It requires more specialized medical 
knowledge to support, and some types of arrhythmia 
disease data are very scarce, which is too expensive for 
high-volume labelling of ECG data. Therefore, the use of 
self-supervised learning methods to pre-train large-scale 
unlabelled ECGs and then fine-tune them using small 
batches of labelled data in downstream tasks to achieve 
automatic diagnosis of arrhythmia diseases is highly 
preferred. 

In this paper, a novel self-supervised model for 12-lead 
ECG arrhythmia classification is proposed. The model is 
pre-trained with MoCo-based contrast learning for 12-lead 
ECG, and the pre-trained model is applied to the 
downstream task representation. Specifically, the main 
contributions of this paper are as follows: (1) During data 
enhancement, Gaussian noise was randomly added to the 
12-lead ECG, and good characterization was achieved in 
contrast learning, (2) The lightweight model xResNet18 
which is less computationally was used as an encoder for 
MoCo. The pre-trained xResNet18 have a good 
performance in downstream tasks, (3) A suitable Gaussian 
noise intensity for the data enhancement process was found. 
 
2. Methods 

2.1. Database 

All the databases used in the paper, including the 
Georgia 12-lead ECG Challenge (G12EC) Database and 
China Physiological Signal Challenge 2018 (CPSC2018) 
database. The Georgia 12-lead ECG Challenge (G12EC) 
Database contains 10344 12-lead ECGs with a length 
between 5 and 10 seconds and a sampling frequency of 500 
Hz. The CPSC2018 database contains 6877 12-lead ECG 
arrhythmia records from 11 hospitals with a balanced 
male-to-female ratio. The duration of each record is 
between several seconds and tens of seconds, and the 
sampling rate is 500Hz. The types of records are: Normal, 
Atrial fibrillation (AF), First-degree atriocentric block (I-
AVB), Left bundle branch block (LBBB), Right bundle 
branch block (RBBB), Premature atrial contract (PAC), 
Premature ventricular contraction (PVC), ST-segment 
depression (STD) and ST-segment elevated (STE). We use 
the Georgia 12-lead ECG Challenge (G12EC) Database as 
a pre-trained dataset and the CPSC2018 database as a 
dataset to test the performance of the model for 
downstream tasks. For each database, sliding windows of 
10s with a 5s overlap is used to intercept the data segment. 
The pre-trained database is a self-supervised process, so its 

data label is not required. The label of the arrhythmia data 
segment from CPSC2018 database is consistent with the 
label of the record it originally belonged to. Further details 
regarding the data are provided in Table 1. 

 
Table 1. The details of the database. 

G12EC Class Train size Test size Total 
- 8233 2059 10292 

CPSC2018 

Class Train size Test size Total 
Normal 1335 373 1708 

AF 1585 385 1970 
I-AVB 909 236 1145 
LBBB 299 64 363 
RBBB 2329 524 2853 
PAC 1201 276 1477 
PVC 1491 391 1882 
STD 1132 312 1444 
STE 347 96 443 

 
2.2. Preprocessing 

To better validate the performance of the model, all 
ECG records were filtered using a bandpass filter with 
passband frequencies from 0.5 to 45 Hz, and the filtered 
signals were normalized to have a mean of 0 and a variance 
of 1. 

 
2.3. xResNet18 

The basic architecture of the xResNet18 model [14] is 
shown in Figure 1. The model consists of Input stem, 
output and 4 stage modules. The Input stem module 
consists of three convolutional layers, each followed by a 
BN layer and a ReLu activation layer. For the 4 stage 
modules, each stage consists of 1 Down sampling and 2 
Residual blocks. 

In this paper, we use the model as a feature extractor for 
MoCo contrast representation learning and use the pre-
trained model parameters for downstream tasks.  

 
Figure 1. Basic architecture of the adopted xResNet18 
model. 

 
2.4. Contrastive Learning Framework 

In this paper, we used the MoCo contrast learning 
representation framework with queue and momentum 



update parameters at its core to enhance the explanatory 
power of the model in the pre-training phase. The 
framework introduces queues in the process of learning 
representations so that the comparison representations 
contain more negative samples and ensure stronger 
generalization performance of the model. At the same time, 
the framework updates the parameters of the encoder in a 
momentum update manner, so that the negative sample 
representations in the queue are more consistent with the 
features of the positive samples. The specific pre-training-
fine-tuning process is shown in Figure 2. The framework 
consists of Data Augmentation, Encoder, Momentum 
Encoder, MLP layer and queue, where the Momentum 
Encoder is momentum updated as the parameters of the 
Encoder change, which is calculated as shown as follows: 

휃� ← 푚휃� + (1 − 푚)휃� 
where, 휃� is the parameter of the Momentum Encoder, 휃� 
is the parameter of the Encoder, 푚  is the momentum 
update parameter and is set to 0.999. 

In the pre-training phase, we initialized a queue to store 
negative samples according to the FIFO principle based on 
the MoCo setup, and the length of the queue was set to 
6400, which is a subset of the training set. For an ECG 
recording of 10s in length, each second data segment was 
treated as a computational unit. We add Gaussian noise 
segments randomly in units of computational units on 
different leads of the same 12-lead ECG 푥�  for data 
enhancement to obtain positive sample pairs 푥�

�, where the 
percentage of noise addition was 80% for each lead. The 
formula for Gaussian noise is shown as follows: 

퐺(푥) =
1

√2휋휎
푒�(���)�

���  

where, 휇 and 휎 are the mean and variance of the generated 
Gaussian noise and are set to 0 and 0.1, respectively. 

The original data 푥� and the augmented data 푥�
� are used 

as inputs to the Encoder and the Momentum Encoder, 
respectively, to obtain the characterization features 퐻 and 
퐻�. 퐻 and 퐻� are then further enhanced by the MLP layer 
for contrast learning interpretation, as described in the 
literature[9]. 

The essence of contrast learning is to improve the 
feature extraction ability of the model by increasing the 
representational similarity between positive samples 
(퐺 and 퐺�) and decreasing the representational similarity 
with negative samples (퐺 and queue). Therefore, InfoNCE 
was chosen as the loss function to calculate the similarity 
between positive and negative samples. The loss function 
is calculated as follows: 

퐿� = −푙표푔
푒푥푝((푞 ∙ 푘�) 휏⁄ )

∑ 푒푥푝((푞 ∙ 푘�) 휏⁄ )�
���

 

where, 푞 and 푘� are the representations of positive sample 
pairs in the mini-batch, and 푘�  is the representation of 
negative samples in the queue. 휏 denotes the temperature 
parameter, which is set to 0.07 in this paper. K denotes the 
size of the queue. 

After completing the forward computation of a mini-
batch, the Momentum Encoder is updated with the Encoder 
parameters, 퐺� is sent to the queue, and the earliest data 
entering the queue is sent out. 

In the downstream task, the pre-trained encoder 
parameters are used directly and the classifier head is 
connected for arrhythmia disease classification. During 
both pre-training and downstream fine-tuning training, the 
Adadelta optimizer was used and the learning rate was set 
to 0.005 and 0.001 for 100 and 200 training epochs with 
batch size of 16 and 32, respectively. 

 
Figure 2. MoCo Comparative Learning Framework. 
 

2.5. Evaluation methods 

For classification results, Sensitivity (푆푒), Specificity 
( 푆푝 ), Accuracy ( 퐴푐푐 ), and 퐴푈퐶 -score are used as 
evaluation indicators. According to the positive or negative 
of the label, two indexes were used: true positive (푇푃), true 
negative (푇푁), false positive (퐹푃), and false negative (퐹푁). 

Where, 
퐴푐푐 = (푇푃 + 푇푁) (푇푃 + 퐹푁 + 푇푁 + 퐹푃).⁄  

The 퐴푈퐶 -score refers to the area enclosed with the 
coordinate axis under the ROC curve. The curve is plotted 
according to a series of different cut-off values, with 푆푒 as 
the vertical coordinate and 푆푝 as the horizontal coordinate. 
The higher the 퐴푈퐶-score, the better the classifier effect. 
 
3. Results 

We added different intensities of noise intensity during 
the contrast learning pre-training, with 휎 being set to [0.1, 
0.2, 0.3, 0.4, 0.6, 0.8], all with a noise addition ratio of 80%, 
and after the same number of training epochs. The 
downstream task performance of the model under different 
Gaussian noise intensities is shown win Figure 3. As seen 
in the figure, the 퐴푈퐶 is maximum at 휎 0.1, which is 0.861. 
More detailed performance metrics for the model at 
different 휎 values are shown in Table 2. When the 휎 was 
0.1, the model achieved an 퐴푐푐  of 77.04% in the 
CPSC2018 arrhythmia database. 



 
Figure 3. Comparison of macro AUC-ROC score at 
different Gaussian noise intensities after training 200 
epochs.  

 
Table 2. The details of performance metrics for the 

model. 
휎 퐴푐푐(%) 퐴푈퐶 

0.1 77.04 0.861 
0.2 76.28 0.857 
0.3 76.13 0.855 
0.4 76.40 0.854 
0.6 76.43 0.851 
0.8 74.82 0.845 

 
4. Discussion 

As shown in Figure 3 and Table 2, different intensities 
of noise had different degrees of influence on the 
performance of the model, and the highest 퐴푐푐 and 퐴푈퐶 
were 77.04% and 0.861 when the variance of Gaussian 
noise was 0.1. In summary, the method is an effective 
lightweight arrhythmia detection algorithm, and the model 
is more amenable to deployment to wearable devices than 
complex models. 
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