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Abstract

Hypertrophic cardiomyopathy is a genetic disorder that
affects the structure of the heart muscle, which can lead
to sudden cardiac arrest. The genetic characterization of
biomarkers remains an open area, and machine learning
techniques are being proposed for its detection. This re-
search aims to apply several of these methods to obtain sin-
gle nucleotide variants (SNVs). We followed a three-stage
approach: First, the initial set of 118142 SNV features
were filtered with the union of Manhattan threshold from
biostatistics together with the Chi-squared test and with a
logistic regression based univariate filtering method, yield-
ing a preselected set of 1974 features; second, linear clas-
sifiers (support vector machine and Fisher linear discrimi-
nant analysis) identified and ranked the relevant features to
distinguish between normal subjects and diseased patients.
Finally, two additional techniques (informative variable
identifier and Bayesian networks) were used to scrutinize
the inter-feature relationships of the SNVs. The results
showed a consensus between linear classifiers in which
variants with higher weights coincide. The 100 variants
with higher weights were visualized to analyze their rela-
tionships. To validate the result, the top-ranked variants
were checked in the literature. Most of them were directly
implicated with the disease or participated in cardiac re-
modeling, meaning that these variants can be considered
modulators of the disease.

1. Introduction

Heart disease is the leading cause of death worldwide.
Despite the advances in the knowledge of its treatment, it
continues to cause the death of approximately 17.9 million
people yearly. Hypertrophic cardiomyopathy (HCM) is
one of the most common hereditary heart diseases. HCM is

characterized by left ventricular hypertrophy and an undi-
lated left ventricle with an altered ejection fraction and it
has a genetic origin. However, their complex features sug-
gest a complex genetic substrate [1].

On the other hand, in recent years, machine learning
(ML) methods have been applied broadly to health prob-
lems that can be addressed from a data-driven perspec-
tive. So far, different works have been developed on ML
and cardiac diseases. For example, they have been applied
for diagnosing heart diseases by interpreting electrocardio-
gram signals [2]. Studies using genomic data from heart
disease often focus on parametric statistical methods.

In this context, it is important to conduct research on
ML techniques to process and analyze vast amounts of ge-
netic information to identify patterns and determine the
variants that are associated with the disease. Therefore,
the first stage of our research consists of the consensus of
univariate filtering methods to obtain the most significant
single nucleotide variants (SNVs) associated with the dis-
ease. Then, with linear classifiers, the variants associated
with the disease can be detected and ranked. Hence sup-
port vector machines (SVMs) and Fisher linear discrim-
inant analysis (FLDA) provide the variants with higher
weights. Once the ranking is established, the top 100 vari-
ants are selected to visualize their interactions and how the
variables are related using informative variable identifier
(IVI) and Bayesian networks (BNs). Finally, the top fea-
tures are checked in the literature, and it is found that they
are variants of genes associated directly with the disease or
produce cardiac remodeling.

2. Materials and Methods

In this section, the description of the dataset as well as
an introduction to the filtering methods and ML methods,
are provided.



2.1. The Dataset

In this study, genetic data from 62 patients with HCM
with an average age of 46 years and 73 control subjects
were obtained using Next Generation Sequencing. The
data was provided by the Hospital Clı́nico Universitario
Virgen de la Arrixaca (HCUVA) in Spain in variant call
format (VCF) and contained information on SNVs. The
data sequenced for the HCM patients contained approx-
imately 500 genes, while the control data provided by a
partner company was composed of patients without heart
disease. However, the genes selected for the study were
those sequenced in all patients and controls. The prepro-
cessing of the raw data consisted of selecting just the ge-
netic information containing SNV; insertions or deletions
were discarded and numerically codified the genotype de-
pending on whether the variant corresponds to monozy-
gotic or heterozygotic. Finally, the genetic information is
composed of 118142 SNVs.

2.2. Filter Methods

Since we are starting from a large data set of 118142
SNVs, we have used the union result of three filter methods
to identify and prioritize relevant features, which consists
of the preselection of variables based on the p-value.

The first method is the chi-squared (χ2) test [3] for each
SNV, which is a measure of the difference between the ob-
served frequency (O) of the SNV in each class and the
expected frequency (E) under the null hypothesis of in-
dependence: χ2 =

∑
i

∑
j

(Oij−Eij)
2

Eij
. The resulting χ2

statistic is then compared to the distribution of χ2 values
with one degree of freedom under the null hypothesis to
obtain a p-value.

Logistic regression is another used method for feature
selection by calculating the corresponding p-value. It is
a statistical model used to predict a binary outcome (the
presence or absence of a disease) based on predictor vari-
ables (SNVs in our case) [4]. The coefficients in the logis-
tic regression model can be used to assess the importance
of each predictor variable, using the statistical z = β

SE(β) ,
where β is the estimated coefficient, and SE(β) is the stan-
dard error of the coefficient. The resulting z statistic is
compared to the standard normal distribution to obtain a
two-sided p-value. Hence, SNVs with lower p-values are
considered to be more associated with the outcome.

In both previous methods, we need to control the false
positive rate (FPR) [5], which is the expected number of
false positives from all the hypothesis tests performed and
we want to guarantee that all hypothesis tests’ percentage
of false positives is 5% or less. For this purpose, the Bon-
ferroni correction is used. However, it is highly criticized
in these studies for not taking into account that the tests are

not independent since the tests are correlated by linkage
disequilibrium (LD). Many modifications to the Bonfer-
roni method have been proposed, including methods that
take LD, false discovery rate, and false positive rate into
account. Essentially, the currently accepted genome-wide
significance threshold is 5×10−8, which can be considered
the Manhattan threshold since it is usually accompanied by
the Manhattan plot. This value can be obtained by calcu-
lating the −log(p-value) and considering the significance
of the SNV that exceeds the threshold [6].

2.3. Machine Learning Methods

In this section, we introduce the methods used in this
study. The first two, SVMs and FLDA are used to obtain
the weights of all the variables to identify and rank the
relevant features, while IVI and BNs are used as methods
to scrutinize the inter-feature relationships.

Firstly, SVMs [7] goal is to establish a decision bound-
ary between two classes that allow for label prediction us-
ing one or more feature vectors. So the objective is to max-
imize the margin 1/∥w∥2 between classes, where w refers
to the vector of weights. We can use the kernel method to
create non-linear and higher-dimensional models. The ker-
nel function maps the input to a higher-dimensional space,
K(x,y) =< f(x), f(y) >, where K is the kernel func-
tion, the n dimensional inputs are x and y, and f maps the
input to m dimensional space from n and < x,y > de-
notes the dot product. Therefore, with this model, we can
obtain the different weights w of each variant.

The second method to obtain the vector of weights is
FLDA which is a technique for finding a linear combina-
tion of features that can distinguish between two or more
groups [8]. The goal is to maximize the distance between
the projected data classes while minimizing the relative
variances of the points around their means. Hence, ob-
taining the vector w such that g(x) = wTx + w0 = 0,
where w0 is the bias term. This is achieved by introduc-
ing Fisher’s discriminant ratio and by differentiating and
equating the criterion to zero.

The next step is to analyze the inter-feature relationships
of the SNVs, which can be done using IVI and BNs. IVI
method is a technique that can categorize each feature as
informative or noisy, find connections between informative
features, and create a ranking in order of importance [9].
The IVI algorithm is based on the initial assumption that
the weights learned by a linear classifier method can sum-
marize important relationships between features, so the in-
put variable space is converted into a weights space by
a low-cost weight generator. To identify redundant fea-
tures, the IVI method calculates the similarity between dif-
ferent variables using the Pearson correlation coefficient,
ρl,z = corr (wl, wz), where corr indicates the normal-
ized correlation coefficient, wl indicates the weights cor-



Figure 1. CI of sorted variables in FLDA and SVM.

responding to the l-th variable, while wz indicates those
corresponding to the z-th variable.

Finally, BNs are also used to obtain the feature relation-
ships. Specifically, we learn the BN using the hill climb-
ing algorithm with bootstrap resampling. This approach
allows us to extract the most significant relationships be-
tween variants, emphasizing those that appear more fre-
quently in the resampling process. Notably, our specific
interest lies in uncovering the relationships between vari-
ants in individuals with the disease, further enhancing our
understanding of the intricate genetic mechanism associ-
ated with the condition.

3. Experiments and Results

The three univariate filter methods were applied sepa-
rately. As a result, 1767, 207, and 764 SNVs were consid-
ered significant for the χ2, logistic regression, and Man-
hattan threshold methods, respectively. Due to the discrep-
ancy in the number of significant SNVs as well as the pos-
sibility of losing potential SNVs related to the disease, the
selection consists of the union of the three results, resulting
in 1974 SNVs.

After obtaining the preselected set of features, both lin-
ear classifiers were applied, the way of proceeding con-
sisted of choosing the most appropriate parameter values
by means of a 10-fold cross-validation. The performance
of the methods is appropriate since the mean error prob-
ability during 10-fold is 0.03 and 0 for FLDA and SVM
respectively. In other words, the separation produced by
the weights, especially in SVM was complete between the
two classes. A 95% confidence interval (CI) was obtained
after performing bootstrap resampling. In both methods,
the number of variables that do not overlap zero is similar,
1570 for FLDA and 1588 for SVM, as shown in Figure 1.

To scrutinize the inter-feature relationships of the SNVs,
IVI was applied to the dataset to obtain the relationship
between genes and the corresponding informative and re-
dundant variables. The algorithm was executed 150 times,
and the variables considered relevant are those that appear
in every iteration. Moreover, a narrow interval was estab-

Figure 2. IVI representation of 68 top-ranked variants.

Figure 3. BN structure learned of the variables associated
with the disease (class 1).

lished for the redundant variables. However, for an appro-
priate visualization process, just the 100 top-ranked SNVs
were selected since they were strongly related to the dis-
ease according to previous ML methods. As a result, the
algorithm considers significant 68 variants. In Figure 2
the relationships between those variants are shown. At the
left of the image, we can see the variants that are related
between them forming groups, while at the right of the im-
age, the variants that are positively and negatively related
to the disease by themselves can be observed.

On the other hand, for obtaining the inter-feature rela-
tionships with BNs, hill climbing algorithm is used to learn
the structure while performing bootstrap resampling. In
this way, we can focus on the strongest relationships in the
learning process which are the ones that appear at least 60
out of 100 times as shown in Figure 3. Moreover, the red
nodes represent a subset of variants that exhibit strong re-
lationships, appearing at least 80 times in the resampling
process.

It is important to note that the majority of SNVs have not
been extensively studied clinically. This means that we of-
ten lack comprehensive knowledge about their functional
impact and whether they are associated with malignancy



or other disease conditions. By identifying the genes asso-
ciated with the highest-ranking variants, we can focus our
attention on specific genomic regions probably linked to
HCM. As a result, a literature review of the 5 top-ranked
genes obtained from the classifiers has been carried out:
RAF1 is frequently reported to produce an increased ki-
nase activity, causing HCM [10]. Another gene obtained
is CACNA1C which has been linked to the mixed pheno-
type of HCM, congenital heart disease, and long QT syn-
drome [11]. Moreover, variations in NRAP genes have
been found in elderly patients with HCM, affecting cardiac
muscle organization [12]. It has been discovered that mu-
tations in MYPN can disrupt muscle structure and signal-
ing, leading to HCM [13]. Therefore, the genes obtained
with higher weights have been discovered to be directly re-
lated to the target disease, or are involved in changes in the
cardiac function. These results indicate that the variants in
these genes can be modulators of expression without be-
ing the main genes causing the disease, that is, HCM can
be caused by the known causal genes, and others can act
as modulators changing the clinical outcome.

4. Conclusions

The results have shown the reliability of ML methods
used to obtain the weights of each SNV due to the results
achieved, including a low probability of error. Addition-
ally, the methods that allowed us to obtain the inter-feature
relationship provided a comprehensive view of how the
SNVs are related, specifically if they are joined to form
groups of greater relevance. Moreover, identifying the top-
ranked genes as being related directly to the disease or as
participating in cardiac remodeling gives evidence of the
presence of genetic modulators in the disease.
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