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Abstract 

Wearable devices enable continuous heart rate (HR) 

monitoring at scale. However, it is unclear how long-term 

HR recorded with wearable devices can be harnessed to 

predict cardiovascular (CV) disease, especially in view of 

a lower accuracy and temporal resolution compared to 

clinical ECGs. We hypothesized that robust HRV estimator 

can identify individuals at higher risk of major adverse CV 

events (MACE) in the general population. In the National 

Survey of Health and Development (NSHD), the Actiheart 

monitor was used to measure 30-second averaged HR in 

1,462 participants aged 60-64 (53.2% female) without 

previous CV disease for up to 5 days. The median absolute 

deviation of 5-min averaged HR (MADAHR) and median 

absolute deviation of 30-sec averaged successive HR 

differences (MADSDHR) were used as robust estimates of the 

established metrics SDANN and SDSD, respectively. After 

a median follow-up of 11.3 years, n=136 (9.3%) MACE 

occurred. Reduced MADAHR and MADSDHR were 

associated with MACE with hazard ratio (95% confidence 

interval) equal to 1.33 (1.10-1.62, p<0.01), and 2.15 (1.39-

3.32, p<0.01) after adjusting for average heart rate, sex, 

body-mass index, hypertension, diabetes, and beta-

blockers. These data demonstrate for the first time that 

wearable derived long-term HRV can predict CV events in 

the general population.    

 

 

1. Introduction 

Heart rate (HR) variability (HRV) refers to the measure 

of the fluctuations in the duration of the cardiac cycle 

between consecutive heart beats and it is considered a non-

invasive cardiac autonomic marker [1]–[3].  Low HRV is 

considered to reflect impaired autonomic function and it 

has an established predictive value in post-myocardium 

infarction patients [3]. An association between low HRV 

and increased risk of developing cardiovascular disease 

has also been identified in the general population, as shown 

in selected population-based cohorts such as UK Biobank 

[4] , Framingham [5], [6], ARIC [7], [8], Rotterdam [9] and 

Ohasama [10] studies. 

Recent advancement in wearable and mobile-based 

devices [11] provide new opportunities for continuous HR 

and HRV monitoring at scale [12], [13]. Novel wearable 

cardiac monitors can be categorised in two groups: those 

that record and store the raw ECG and those that only 

provide averaged heart rate every few seconds or minutes. 

The first group represents the new generation of Holter 

monitors and can be used to estimate standard and 

advanced beat-to-beat HRV metrics [1], [2], but are 

expensive and their use is limited to specialized clinical 

applications. The second group includes consumer-grade 

devices, which are becoming ever more affordable and 

easier to wear for many consecutive days but cannot be 

used to measure standard beat-to-beat HRV due to 

insufficient accuracy and temporal resolution. It is 

currently unclear if HR time-series obtained through these 

cardiac monitors can be harnessed to assess cardiovascular 

risk. The aim of this study was to address this knowledge 

gap by using data collected in a population-based cohort 

study, the MRC National Survey of Health and 

Development (NSHD) [14], between 2006 and 2011 using 

a cardiac monitor which provided averaged HR data every 

30 seconds for up to 5 consecutive days.  

 

2. Methods 

2.1 Cohort description and outcomes 

The MRC NSHD study recruited a representative 

sample of 5,362 men and women born in England, 

Scotland and Wales in a single week in March 1946 [14], 

and it is the longest running birth cohort in the UK. 

Between 2006 and 2011, 1,880 participants were given a 

cardiac monitor (Actiheart, Camntech) and were instructed 

to wear it for 5 consecutive days. The cardiac monitor used 

a chest patch to acquire a single-lead ECG and provided 

measurements of heart rate in beats per minute every 30 

seconds. The raw ECG was not recorded. After data 

collection, n=418 participants were excluded from the 

study for meeting any of the following criteria: >25% of 

missing HR samples (n=82); HR monitored for less than 

36 hours (n=116); prevalent cardiovascular disease, 



identified using hospital records or self-reported (n=313). 

Statistical analyses were conducted in the remaining 1,462 

participants. Follow-up data was available until the 1st of 

December 2021, for a median (interquartile range) of 11.3 

(10.7-12.0) years. Major adverse cardiovascular events 

were identified using Hospital Episode Statistics and 

included ischaemic heart disease, myocardial infarction, 

angina, heart failure, and stroke.  

 

2.2 Heart rate variability analysis 

Standard and robust estimators of HRV in the temporal 

domain were derived from the time-series of 30-second 

averaged HR provided by the device. That is, the wearable 

device recorded one averaged HR value every 30 second 

for 5 consecutive days. Since data were measured by the 

device with 1 beat per minute (bpm) resolution, HRV 

metrics were not converted in ms. The following metrics 

were included: 

− SDAHR: Standard deviation of 5-min averaged HR. 

− MADAHR: Median absolute deviation of 5-min 

averaged HR. 

− SDSDHR: Standard deviation of 30-second averaged 

successive HR differences.   

− MADSDHR: Median absolute deviation of 30-second 

successive averaged HR differences.   

SDAHR is equivalent to the established HRV metrics 

SDANN [2], with the caveats that using the cardiac 

monitor data it is not possible to establish if the underlying 

rhythm is normal (NN) and that units were kept in bpm 

instead of milliseconds. MADAHR is a robust estimate of 

SDAHR which uses the median absolute deviation instead of 

the standard deviation. Similarly to the established HRV 

metric SDSD [2], SDSDHR was designed to capture faster 

HR oscillations. However, the two are not equivalent since 

SDSDHR uses successive differences derived from 30-sec 

averaged HR, whereas SDSD uses successive differences 

of beat-to-beat RR-intervals.  

 

2.3 Statistical analysis 

Data distributions are reported as median (interquartile 

range) and differences across distributions were assessed 

using the rank-sum Wilcoxon test. Differences in 

frequency across groups were assessed with the Fisher's 

exact test. 

Survival analysis was conducted using Cox regression 

models. Models were adjusted for mean heart rate, sex, 

body mass index (BMI), and self-reported hypertension, 

diabetes, and use of beta-blockers. All HRV parameters, 

except MADSDHR, were log-transformed to account for 

right skewness and then normalized as in previous studies 

[8]. MADSDHR was composed of integer numbers ranging 

between 1 and 8, and it was therefore dichotomised as 

MADSDHR≤1 bpm.  

 

 

3. Results 

Figure 1. Examples of 5-min averaged heart rate and successive differences of 30-sec averaged heart rate in two cases, one with 

(right) and one without (left) future major adverse cardiovascular events during follow-up. HRV metrics are reported in the panels. 

 



After exclusions, 1,462 participants were monitored for 4.7 

(4.1, 5.0) consecutive days. During the follow-up, n=136 

(9.3%) participants registered a MACE. Participants’ 

baseline characteristics are reported in Table 1. At 

baseline, participants with future MACE were more 

prevalently male and beta-blockers users and had more 

frequently hypertension. Age, BMI, diabetes, mean heart 

rate, SDAHR and SDSDHR did not differ between the two 

groups, whereas robust HRV estimates MADAHR and 

MADSDHR were lower in participants who developed 

MACE compared to participants who did not. This is 

reflected in Figure 1, which shows 5-min averaged HR 

(above) and successive difference in 30-sec averaged HR 

(below) over 5 days in a participant who did (right) and did 

not (left) develop MACE during the follow-up. In the 

figure, the participant who developed MACE showed a 

smaller range of variation in HR as well as in HR 

successive differences.  

Survival analysis demonstrated that MADAHR and 

MADSDHR≤1 bpm were associated with future MACE, 

even after adjusting for mean heart rate and several 

traditional risk factors (Table 2), while SDAHR and SDSDHR 

were not.  

 

3. Discussion 

The aim of this study was to test if wearable-derived 

heart rate could be harnessed to predict MACE in 

individuals without underlying cardiovascular disease. We 

demonstrated that robust HRV estimates derived from 5-

min averaged heart rate and successive differences in 30-

sec averaged heart rate were associated with increased 

long-term risk of developing MACE. The association 

between HRV metrics and MACE remained significant 

after adjusting for mean heart rate and traditional risk 

factors including sex, body mass index, hypertension, 

diabetes, and use of beta-blockers. We did not adjust for 

age because all participants had the same age ± 1 year at 

the time of recording. To the extent of our knowledge, this 

is the first study to demonstrate that cardiac monitors that 

measure heart rate every few seconds for several days can 

be used to identify individuals with long-term risk of 

developing MACE. A limited number of previous studies 

had established an association between low beat-to-beat 

HRV derived from ambulatory ECG recordings and 

cardiac events [6], [10], but it was not clear if heart rate 

series sampled at a lower temporal resolution (i.e. every 30 

seconds instead of every beat) and with coarser 

quantization (1 bpm instead of 1 ms) could be harnessed to 

predict cardiac events. Our data show that traditional 

estimators based for example on the standard deviation fail 

to discriminate individuals with elevated cardiovascular 

risk, most probably because of the effect of outliers, noise 

and artefacts which are inevitably present in automated 

measures from cardiac monitors worn during free-living 

activity. However, the simple use of robust estimators such 

as the median absolute deviation was enough to increase 

the predictive value of wearable derived HRV.    

This study has important clinical ramifications because 

it suggests that popular consumer-grade wearable devices 

such as smartwatches could be used to assess 

cardiovascular risk at unprecedented scale and low cost 

and, importantly, during free-living conditions. There is an 

urgent need to find innovative solutions to tackle 

cardiovascular disease, whose incidence is expected to 

dramatically increase in the next few years, and this study 

suggests that it may be possible to transform data 

seamlessly recorded during free-living activity into 

accurate prognostic information. 

Future work is required to clarify what MADAHR and 

MADSDHR represent. Despite the reduced temporal 

resolution of wearable derived heart rate, they may reflect 

cardiac autonomic function, but they may also reflect 

physical activity or cardiac reserve. Comparing them with 

standard short-term HRV metrics and with markers of 

physical activity and cardiorespiratory fitness may help 

better understanding their association with MACE. 

Longitudinal studies using PPG-based cardiac monitors 

are required to assess the potential of consumer-grade 

wearable devices for predictions of cardiovascular events. 

 

Table 1. Association between HRV metrics and MACE. HR: 

Hazard Ratio; CI: Confidence Interval. The adjusted models 

included average heart rate, sex, BMI, hypertension, diabetes, and 

beta-blockers.   

 

 

Table 2. Hazard ratio (HR) and 95% confidence interval (CI) for 

HRV parameters. Models were adjusted for mean heart, sex, body 

mass index, hypertension, diabetes, and use of beta-blockers. 

Significant associations (P<0.05) are reported in bold. SD: 

Standard deviation; Dec: Decrease. Ln: Logarithmic 

transformation 



4.  Conclusions  

Robust estimates of heart rate variability from long-term 

wearable-based cardiac monitoring are associated with 

increased risk of major adverse cardiovascular events in 

middled aged individuals without previous cardiovascular 

disease. 
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