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Abstract

Cardiac arrest is a fatal condition requiring rapid iden-
tification and intervention. Our team “SHE Lab” devel-
ops a deep neural network for automated detection from
single-lead electroencephalogram (EEG) as part of the
‘Predicting Neurological Recovery from Coma After Car-
diac Arrest: The George B. Moody PhysioNet Challenge
2023’. Our model comprises complementary time-domain
and spectral-domain to extract prognostic biomarkers.
The adaptive time-domain convolution block directly ana-
lyzes the EEG waveform. The multi-resolution wavelet de-
composition block captures discriminative spectral bands.
Feature fusion integrates this multi-modal information be-
fore final classification. While our team was unable to
be scored on the test set, experiments demonstrate excel-
lent performance with accuracy 78.1%, AUROC 0.914,
AUPRC 0.942, F1-score 0.841 on our locally partitioned
validation dataset. Compared to methods based on multi-
lead EEG, our automated single-lead interpretation model
can achieve accessible and scalable monitoring, providing
a powerful and universal method to explore the predictive
function of EEG. The proposed biomarkers demonstrate
the low-cost, rapid diagnosis, real-time care, and wear-
ability in clinical practice. Therefore, the biomarkers may
provide important value for the prognosis evaluation and
timely treatment of patients with cardiac arrest.

1. Introduction

Cardiac arrest is a life-threatening condition that occurs
when the heart suddenly stops pumping blood to the body’s
vital organs. It is a leading cause of death worldwide, with
survival rates below 10% in out-of-hospital cardiac arrests
even with cardiopulmonary resuscitation (CPR) and defib-
rillation attempts. Rapid and accurate identification of car-
diac arrest is critical to enable early interventions and im-
prove outcomes. Previous studies have shown the utility

of electroencephalography (EEG) in evaluating brain func-
tion and predicting recovery in comatose survivors of car-
diac arrest[1][2]. However, the above studies are all based
on multi-lead EEG data. It is known that multi-lead EEG
data is very expensive to collect and difficult to provide a
signal source for wearable devices.

With the development of deep learning, there are emerg-
ing opportunities for automated EEG interpretation. Con-
volutional neural networks (CNNs) can directly analyze
EEG raw signal and perform feature extraction and clas-
sification end-to-end. While multi-lead EEG provides spa-
tial information, single-lead EEG has the advantages of
wide availability and simple acquisition. Effective learn-
ing from single-channel EEG remains a challenge. The
George B. Moody PhysioNet Challenge 2023[3,4] offers a
chance to make progress in predicting outcomes for coma
patients following cardiac arrest by granting access to a
substantial international multicenter database comprising
over 1,000 subjects who collectively underwent more than
50,000 hours of EEG monitoring collected by the Interna-
tional Cardiac Arrest REsearch consortium (I-CARE)[5].

In this study, we develop a deep neural network model
comprising time-domain and frequency-domain blocks
to extract prognostic information relatd biomarker from
single-lead EEG recordings. The adaptive time domain
block performs feature extraction from raw waveform. The
multi-spectral representations block transforms the sig-
nal to spectrogram representations to analyze critical fre-
quency bands. The complementary information is inte-
grated through concatenation before final classification.
Our model aims to accurately predict neurological out-
comes based on early coma EEG after cardiac arrest.
The learned EEG features can potentially inform patient-
specific pathology and recovery processes. The biomarker
has the potential to be converted into a wearable device
for real-time monitoring and timely intervention in cardiac
arrest patients.



2. Method

2.1. Preprocessing

For this challenge, the database[3, 5] consisted of data
from 1,020 adult patients with out-of-hospital or in-
hospital cardiac arrest who recovered cardiac function
(“return of spontaneous circulation”, ROSC) but remained
in a comatose state. All patients were admitted to the ICU
and their body activity was monitored with continuous 18-
channel EEG and 1-channel ECG. Monitoring usually be-
gins within hours of cardiac arrest and continues for hours
to days depending on the patient’s condition. Therefore,
the start time and duration of the record varied for each
individual. The labeling results were determined prospec-
tively by telephone interview (6 months after ROSC) for
clinical outcomes and chart review (3-6 months before
ROSC) for the remaining hospitals. Neurologic function
was also measured using the Cerebral Performance Cate-
gory (CPC) scale.

Figure 1. 300 seconds of EEG signals before and after
preprocessing.

All EEG data were preprocessed using bandpass filter-
ing (0.5-20 Hz) and then resampled to 100 Hz. For the
latest release of raw data, the training process requires 60
to 72 hours of data for training as data augmentation, and
5 minutes of signal with better quality is selected for each
hour. The preprocessing results are shown in Figure 1.

2.2. Network Structure and Experiment

The overall network architecture is shown in Figure 2,
consisting of the following modules: 1) preprocessing, 2)
adaptive time domain block, 3) multi-spectral representa-
tions block, and 4) classification block. The network is
trained end-to-end, jointly optimizing the parameters of
all modules, to extract both temporal-domain and spectral-
domain from the EEG signals simultaneously, improving
classification performance. Our proposed model uses the
RMSprop optimizer with an initial learning rate of 0.001,
batch size of 256. The experiments are implemented using
Python 3.8.15, PyTorch 1.13.1 and NVIDIA 3090 GPU.

Figure 2. The architecture of the temporal-spectral based
single-lead eeg feature fusion network. (a) Preprocessing,
(b) Adaptive Time Domain Block, (c) Multi-Spectral Rep-
resentations Block, (d) Classification Block.

2.3. Adaptive Time Domain Block

CNNs learn low-level representations from waveforms,
whereas traditional filtering functions can discover more
meaningful and effective features. Based on SincNet[6],
which is used in the speech speaker recognition task, the
filter bank is efficiently customized by implementing adap-
tive bandpass filters to learn the low cutoff frequency and
high cutoff frequency directly from the data. The first layer
of the CNN performs a set of time-domain convolutions
between the input waveform and finite impulse response
(FIR) filters. The convolution operation is as follows:

y[n] = x[n] ∗ g[n] =
L−1∑
l=0

x[l] · g[n− l] (1)

where x[n] is the corresponding signal, g[n] is a filter of
length L, and y[n] is the filtered output. The elements of
CNN filter are learned from the row data. Instead, the
adaptive bandpass filter forms a convolution with a pre-
defined function g that depends on only a few learnable
parameters:

y[n] = x[n] ∗ g
′
[n, θ] (2)

where fs denotes the sampling frequency of the input sig-
nal and the cutoff frequency is initialized at random in the



range [0, fs/2]. And using the cutoff frequency of the
Mayer filter bank to initialize the filter, many key signal
features can be better captured.

In addition, the weights of the filters are trained by sub-
sequent layers so that different levels of importance can be
assigned to the output of each filter. The ideal bandpass
filter needs to be of infinite length, characterized by rip-
ples in the passband and finite attenuation in the stopband.
Therefore, window strategy is adopted, which is achieved
by multiplying the truncation function g with the window-
ing function w. The experiment takes Hamming windows:

w[n] = 0.54− 0.46cos(
2πn

L
) (3)

Hamming windows are particularly well suited to achieve
high frequency selectivity [36]. The overall network struc-
ture is shown in Figure 2(b). The adaptive filter is taken for
convolution, then standard pooling, normalization, activa-
tion and drop out layers are taken. Finally full connectivity
extraction is taken to target the time domain feature extrac-
tion of EEG signals.

2.4. Multi-Spectral Representations Block

Due to the non-stationary nature of EEG, the effective
extraction of EEG spectral components is challenging. In-
spired by Li et al[7]., we introduce a multi-spectral repre-
sentations block (MSR-block) block by using a series of
wavelet convolutions to obtain multi-spectral representa-
tions corresponding to five clinical frequency bands and
further concatenate them into multi-spectral features.

Specifically, MSR-block achieves wavelet decompo-
sition of EEG representations by applying a convolu-
tion operator called Wavelet Convolution (WaveConv).
Daubechies order-4 (Db4) wavelet have high correlation
coefficients with brain signals, have good orthogonality
and efficient filter implementation[8], and do not involve
learnable parameters in WaveConv, so the Db4 wavelet is
chosen for this module for spectral feature extraction. Af-
ter a series of WaveConv layers in MSR-block, the EEG
representation is decomposed into coefficients correspond-
ing to five frequency subbands that satisfy the clinical in-
terest: δ subband (0-4Hz), θ subband (4-8Hz), α sub-
band (8-12Hz), β subband (13-30Hz), and γ subband (30-
50Hz). Assuming the input EEG is X x, the WaveConv at
time sample t is defined as follows:

xA (t) =

R∑
r=0

x (s× t− k)× u (r) (4)

xD (t) =

R∑
r=0

x (s× t− k)× v (r) (5)

The WaveConv uses approximation and detail wavelet
filters u and v to generate approximation and detail co-
efficients xA and xD from EEG signals. The number of
WaveConv layers V depends on sampling rate fs to obtain
5 subbands. WaveConv has stride of 2 and kernel size of
8, matching the Db4 wavelet. xA and xD are computed
together then separated, so output channels are 2R (R is
input channels). xA and xD are separated by formula:

xA = {xw(c)|c = 1, 3, . . . , 2R− 1} (6)
xD = {xw(c)|c = 2, 4, . . . , 2R} (7)

Distortion is reduced by periodic padding on xA. In
summary, WaveConv generates multi-band spectral repre-
sentations of EEG signals. The MSR-block applies Wave-
Conv in parallel to extract spectral features within each
band.

3. Results

Figure 3. Receiver-operating characteristic curves.

Figure 4. Precision-recall curves.

Our proposed model demonstrates strong performance
for cardiac arrest detection on the validation set. On the
20% held-out validation set that has been data augmented,
as shown in Figure 3 and 4, our model achieves accuracy
of 78.1%, F1-score of 0.841, AUROC of 0.914, AUPRC of



Figure 5. Confusion matrix for the outcome prediction for
comatose patients post cardiac arrest.

0.942, and a challenge score of 0.701 on our locally par-
titioned validation dataset. We would like to emphasize
that our team did not achieve any scores in both the un-
official and official phases, all the results reported in this
paper were obtained on the public training set. Addition-
ally, the confusion matrix in Figure 5 provides insight into
the true/false positives and negatives. These results on key
classification metrics reflect the model’s effectiveness at
distinguishing cardiac arrest cases from normal EEG sig-
nals. The validation performance highlights the potential
of our proposed temporal-spectral feature fusion approach
as an effective biomarker for cardiac arrest detection from
single-lead EEG.

4. Discussion and Conclusion

Our proposed temporal-spectral feature fusion model
achieves strong cardiac arrest detection from single-lead
EEG, obtaining excellent classification metrics on the val-
idation set. The complementary time and frequency do-
main features effectively capture pathological EEG pat-
terns. Compared to multi-channel EEG studies, our au-
tomated single-lead EEG interpretation provides an acces-
sible and clinically applicable approach to enable wearable
monitoring and timely intervention. The learned repre-
sentations show potential as practical biomarkers for rapid
diagnosis. Although we demonstrate strong performance,
further validation and extension to out-of-hospital cardiac
arrest is needed to predict more fine-grained outcomes to
better assess real-world impact.

In conclusion, we present a deep learning model inte-
grating time-domain and multi-spectral EEG features to
accurately detect cardiac arrest, showing the promise of
automated EEG-based biomarkers. Our adaptive model-
ing of raw waveform and spectral bands from single-lead
EEG provides an important step toward patient-specific as-
sessment and timely treatment. This study offers a practi-
cal, generalizable framework to leverage EEG’s prognostic
capabilities for cardiac arrest care. The proposed biomark-

ers could be translated to clinical use through low-cost and
real-time wearable devices.
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