## Spectral Profiles of Sonothrombolysis Bubble Radiation

Vitoria S Souza, Sergio S Furuie

University of Sao Paulo, Sao Paulo, Brazil

**Background.** Clinical applications of controlled, ultrasound-induced bubble cavitation, such as cardiac sonothrombolysis, are becoming more of a reality by the day. The dynamics of cavitating bubbles have been studied in laboratory settings, but during a therapeutic procedure information regarding the type and intensity of cavitation activity in the coronary arteries is desirable in real time for patient-specific balancing of efficacy against safety. A system for acoustic detection of cavitation would lend itself quite well to that purpose, at little added expense compared to transmit-only ultrasound devices. In order to assess the feasibility of such a system, we sought to identify characteristic profiles of sound reradiated by bubbles driven by different acoustic fields.

**Methods.** The Rayleigh–Plesset and Gilmore models were implemented in software and used to predict the sound that would be reradiated by bubbles. Bubbles were driven by a simulated phased array transducer, and the sound received afterward by the array was beamformed and spectrally analyzed.

**Results.** The transmitted pressure amplitude (drive) was ramped up from 1 kPa to 10 MPa per transducing voxel of the phased array, inducing pressures of roughly 60% that much at the bubble. Three distinctive spectral morphologies could be identified: (i) below the atmospheric pressure, the spectral energy was predominantly at the insonation frequency (fundamental), indicating linear oscillations; (ii) as the drive approached



the atmosphere, integer harmonic components became very strong, with the second harmonic eventually overtaking the fundamental; and (iii) about an order of magnitude above the atmosphere, the 1/2 subharmonic and associated ultraharmonics often appeared rather strongly, a characteristic of high-energy cavitation. Furthermore, as the driving pressure was raised, the broadband spectral power increased remarkably.

**Conclusion.** Our findings are in general agreement with qualitative descriptions from the literature, and may help guide the development of a real-time cavitation reporting system for controlled, safe sonothrombolysis interventions.