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Abstract

Although most of the patients’ recordings includes large
scale long-term physiological time series, the patient-level
quantity is relatively small, posing great challenges for
machine learning methods. As part of the George B.
Moody PhysioNet Challenge 2023, we aim to propose a
series of Reducing Overfitting techniques in Deep learn-
ing for EEG (coined as RODE) in this scenario, for neu-
rological recovery prognosis. RODE is a simple yet ef-
fective machine-learning method, which is mostly powered
by generalizable deep-learning features. Specifically, we
first pre-train a convolutional neural network on the seg-
ment level with a margin-based and mining-based loss,
and extract deep features from it. Then we decrease the
deep features’ complexity using dimensionality reduction
methods, which prove to be quite significant for reducing
overfitting in deep learning. Finally, we combine the re-
duced features with static features in patient level, and put
them into an ensemble model for classification. Our team,
PKU NIHDS, receives a Challenge score of 0.821 on the
hidden validation set and 0.708 on the hidden test set.

1. Introduction

In the 2023 George B. Moody PhysioNet Challenge [1],
teams aim to develop automated methods to predict pa-
tient outcomes after cardiac arrest from long-term EEG
and some other types of physiological time series such
as ECG [2]. There is plenty of research focusing on ex-
tracting representative features from EEG for training the
machine-learning model, which greatly speeds the analyti-
cal procedure of long-term EEG and then reduces the labor
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Figure 1. The framework of the proposed method RODE

work for neurologists. Some work first applies knowledge-
driven extraction pipelines to collect various kinds of ex-
pert features and then combine these features for predic-
tion. In this way, practitioners are required to have certain
prior domain knowledge of the data to build an effective
method. More recently, deep learning has emerged as a
popular data-driven method for end-to-end feature extrac-
tion. The deep representations learned by deep learning
methods usually boost the performance on many down-
stream tasks and may not be explored by the traditional
feature extraction methods.

In this work, we choose to utilize deep learning for fea-
ture extraction from long-term EEG. However, sufficient
data is needed for a deep learning framework to prevent the
common overfitting problem, which is challenging when
using the I-CARE dataset [2] on the patient level. Conse-
quently, we Reduce the Overfitting via adopt several use-
ful training settings for the Deep learning process of EEG
(RODE), including training on the segment level, use of



a margin-based and mining-based loss, and dimensional-
ity reduction with transformations. The obtained features
are then combined with static features composed of demo-
graphic features and expert features to formulate the final
input to the Catboost classifier.

In summary, our contributions include: 1) We propose
a novel automated method powered by deep learning for
neurologic outcome prognosis. Specifically, we adopt ef-
fective procedures to reduce overfitting in deep learning
and thus enable the model to learn more generalizable deep
features; 2) Our method achieves impressive performance
on the clinical metrics, which is promising to help clini-
cal workers make better prognosis decisions for comatose
patients after cardiac arrest.

2. Methods

The overall framework of our proposed method is shown
in Figure 1. Generally, a deep neural network is trained
on the longitudinal EEG to extract deep features and an
ensemble classifier combines the deep features with static
features for patient outcome prediction. We elaborate the
designs for reducing overfitting in Table 1.

2.1. Data preprocessing

We choose 4 EEG channels of F3, F4, P3, and P4 and
recompute them into two bipolar channel data, i.e. F3-P3,
F4-P4. The longitudinal EEG is filtered to keep the band-
pass frequencies between 0.1 and 30 Hz and then resam-
pled to 100 Hz to reduce the data size. We only keep the
EEG that was recorded ahead of 72 hours after ROSC (re-
turn of spontaneous circulation) for model training. Note
that we do not apply further normalization to the EEG.

We split the long-term EEG into the 5-minute segment
level and ensure the resulting segment EEG pertains to a
single recording hour, which is essential for data consis-
tency. Normally, a 5-minute time window of EEG is suf-
ficiently long to recognize irregular brain rhythm, so we
label each time window with the outcome label of the pa-
tient it is derived from. This process could generate many
more samples for deep learning than directly training on
the patient level, and more importantly, is more feasible
considering the large quantity of long-term EEG.

2.2. Deep learning method

Convolutional neural networks (CNN) have been widely
used in the field of signal processing, especially for the
analysis of physiological time series [3, 4]. In this work,
we utilize an improved version of CNN [5] as the backbone
for automatic feature extraction of the longitudinal EEG.

After consideration, it occurs to us that, even though ev-
ery 5-minute EEG segment is different in morphology, fre-

quency domain, and so on, they all belong to the same pa-
tient, which interestingly shows some correspondence of
different facial views of the same person. We then for-
mulate the EEG segment classification as a typical face
recognition problem. We use a popular deep metric learn-
ing method in the face recognition field to guide the CNN
to learn discriminative features of the EEG. Though self-
supervised learning has been widely implemented in the
EEG analysis [6], we would mainly use labels to help the
deep learning model learn an efficient metric to distinguish
data samples of different outcomes. Therefore, our method
is in the context of supervised deep metric learning.

Usually, the softmax-based loss is used in the time series
classification problems, which may fail to learn representa-
tive features with only limited data samples. Consequently,
margin-based loss functions are proposed to prompt the
model to learn more discriminative deep features which
could be more generalizable to mitigate overfitting. There
are also some mining-based methods for allocating higher
weights to hard samples, which proved to boost the model
performance. In this work, we apply the CurricularFace
loss [7], in which the margin-based setting and the mining-
based setting are jointly learned and enhanced by curricu-
lum learning, to train the deep neural network.

The vanilla softmax loss is usually defined as L =

− log eWyi
xi+byi∑n

j=1 eWjxi+bj
, where xi is the output feature vec-

tor of CNN with respect to the i-th sample, yi is the la-
bel of sample i, n is the number of classes. Wj denotes
the transformation part related to class j, and bj denotes
the bias which is usually ingored. By applying the l2
normalization, Wj is normalized to 1 and the deep fea-
ture xi is both normalized and then rescaled to s. Now
Wjxi = ||Wj ||||xi||cosθj = s(cosθj). Thus, the softmax
is rewritten as L = − log es(cosθyi )∑n

j=1 es(cosθj)
.

In CurricularFace, the setting of positive and negative
similarity functions are parameterized as P(cosθyi) =
cos(θyi

+ m), N(t, cosθj) = cosθj when P (cosθyi
) −

cosθj ≥ 0, and N(t, cosθj) = cosθj(t + cosθj) when
P (cosθyi

) − cosθj < 0. m is the margin coefficient and
t is a parameter adaptively learned by the curricular learn-
ing method. With Exponential Moving Average (EMA),
t is updated via t(k) = αr(k) + (1 − α)t(k−1), where
t(0) = 0, r(k) =

∑
i cosθyi is the average of the simi-

larity value in the k-th batch, and α is the the momentum
coefficient. Therefore, the final CurricularFace loss can be
derived from the equations above and written as:

L = − log
es(cosθyi+m)

es(cosθyi+m) +
∑n

j=1,j ̸=yi
esN(tk,cosθj)

GroupNorm is used to replace BatchNorm for better per-
formance. In CurricularFace, m is set to 0.5, s is set to 64,
and α is set to 0.99.



Items Example Options Notes Implementations

Deep learning
(Section 2.2)

Training objects
- Segment-level EEG
- Patient-level EEG

The former produces more training samples for model training and
is more feasible in the context of long-term EEG classification Segment-level

The loss function
- Margin-based
- Mining-based

The margin-based loss poses challenges for DNN to learn more
discriminative features and the mining-based loss allows DNN
to assign a different weight for easy and hard samples

CurricularFace

Normalizations
- BatchNorm
- GroupNorm

BatchNorm reduces the individual impact of samples on the
training process and GroupNorm is more appropriate in
general settings with varied batch size

GroupNorm

Feature combinations
(Section 2.3)

Segment → Patient - Simple averaging
- Learnable averaging

Learnable averaging introduces extra parameters to optimize which
is more prone to cause overfitting but may lead to better results
when suitably trained

Simple averaging

Dimensionality reduction
- Supervised methods
- Unsupervised methods

The ensemble model may degenerate due to redundant deep
features and supervised methods could utilize label information to
better learn the reduction process

LDA+KNN

+Static features - Direct concatenate
- Importance weight

The feature importance of static features and deep features
need to be compared and adjusted thoughtfully Direct concatenation

Ensemble classifier
(Section 2.4)

Model type
- Xgboost
- Catboost

Generally, GBDT (Gradient Boosting Decision Tree) methods
are popular candidates for ensemble learning with respect to
heterogeneous features (static & deep features)

Catboost

Parameter tuning
- Maximum number of trees
- Tree depth

As for parameters such as the maximum number of trees
(iterations in Caboost) and the tree depth (depth in Caboost),
a small value may help reduce overfitting

Iterations: 1000→100
Depth: 6→4

Table 1. A recipe for reducing overfitting in EEG classification

2.3. Combine static features and deep fea-
tures with dimensionality reduction

Static features are composed of basic demographic fea-
tures and hand-crafted expert features of EEG. Demo-
graphic features are extracted from the patient metadata,
including age, sex, ROSC, OHCA (out-of-hospital cardiac
arrest), shockable rhythm, and TTM (targeted temperature
management). After applying one-hot encoding on the sex
variable, all these features are put together to formulate
the final patient demographic features. Expert features of
EEG can be derived from the careful design of extraction
methods such as frequency-domain analysis, time-domain
analysis, and so on. In this work, we assume that the deep
features of EEG contain sufficient information to discrim-
inate each class, so we apply no extra feature engineering.

After training, the CNN generates a high-dimensional
deep feature vector from EEG segments, posing challenges
for the ensemble classifier in concatenating and correlating
it with static features. To address this, we employ two di-
mensionality reduction methods to reduce the dimension
of deep features. These reduced features are then concate-
nated with static features and fed into the ensemble classi-
fier, mitigating overfitting issues.

The first method is Linear Discriminant Analysis
(LDA), which is a classic supervised dimensionality
method to project the input into the most discriminative
directions. The second method is based on the nearest
neighbor search method, which would be used to compute
the number of close-by embeddings for each class given
a fixed size of K. The number of dimensions reduced by
the second method (KNN) corresponds to the number of
classes in the dataset. Then the LDA output is concate-
nated with the KNN output to formulate the reduced fea-

tures. In implementation, the LDA-reduced dimension is 1
and the k nearest neighbors in KNN is set to 5.

The deep features of all EEG segments of the same pa-
tient are simply averaged on each dimension to form one
single vector representing the information learned from the
long-term EEG. Herein we do not apply learnable pooling
methods in case introducing more unnecessary parameters
could intensify overfitting.

2.4. Ensemble classifier

Catboost [8] is used as the ensemble classifier to make
the eventual prognosis. The reduced feature is combined
with static features as the final input to the Catboost model.
Note that the dimensionality reduction methods mentioned
above are already integrated into the pipeline of Catboost
and we thus take advantage of them. For the Catboost set-
ting, we set training iterations to 100 and tree depth to 4.

3. Results

On the public training set, we apply a 5-fold cross-
validation to fully analyze the model performance. The
first evaluation metric is the official Challenge score, with
area under the receiver operating characteristic (AUROC)
and area under Precision-Recall (PR) curve (AUPRC) as
typical metrics for evaluating binary classification perfor-
mance. For the purpose of ablation studies, we show the
results for the metrics value of different settings. Specifi-
cally, we utilize the vanilla softmax loss for model training
and further explore the effect of dimensionality reduction
methods and the influence of some Catboost hyperparam-
eters regarding the overfitting problem.

As is shown in Table 2, the proposed framework outper-



Score AUROC AUPRC
vanilla softmax 0.497±0.165 0.852±0.017 0.881±0.021
w/o reduction 0.678±0.041 0.894±0.018 0.930±0.005

default catboost 0.691±0.075 0.901±0.022 0.933±0.018
RODE 0.723±0.050 0.906±0.026 0.937±0.018

Table 2. Results of the ablation study of 5-fold cross val-
idation on the public training set. Score refers to the true
positive rate at a false positive rate of 0.05.

Training Validation Test Ranking
0.723± 0.05 0.821 0.708 5/36

Table 3. The official Challenge score for our final selected
entry with the ranking of our team on the hidden test set
out of 36 official entries and 75 unofficial entries.

forms the baselines across all metrics, obtaining 0.723 on
average for the CinC Challenge score, 0.906 on average
for AUROC, and 0.937 on average for AUPRC. The ab-
lation results indicate that each modification in the frame-
work will help to boost prediction performance. Table 3
presents the summarized Challenge results.

4. Discussions

In most clinical scenarios, such as the I-CARE dataset
[2], the patient-level quantity is relatively small but the
amount of overall physiological recordings in each patient
could be rather large, which is liable to result in overfitting
in automated machine learning methods. To tackle this, we
adopt several essential procedures to reduce overfitting in
the proposed framework, especially for the deep learning
part, which excels at extracting deep representations but is
usually constrained by the issue of overfitting. Specifically,
we formulate the EEG segmentation as a face recognition
task and utilize advanced deep metric learning methods to
train the CNN. In this process, EEG representations from
various views are learned for each patient, which greatly
helps the network extract discriminative and generalizable
deep features. We then use dimensionality reduction meth-
ods on the deep features to produce reduced features with
more compact EEG representations, which further help to
mitigate the overfitting problem. In addition, we explore
the effects of different parameters of the ensemble classi-
fier. As is shown in the experimental results, the proposed
framework achieves satisfactory performance on the cross-
validation setting and also the Challenge hidden validation
set, with prominent flexibility and scalability. To aid future
research, we summarize our efforts of reduce overfitting,
presented in Table 1.

Nevertheless, there is still some future work worthy of
further exploration. First, more dimensionality methods
could be used to reduce the dimension of the DNN output,
such as Neighborhood Component Analysis (NCA). Sec-

ond, we did not spend much time on the hyperparameter
tuning process of the ensemble classifier considering the
time cost of training this vast amount of time series data.
At last, transfer learning methods and self/un-supervised
learning methods that pre-train the deep learning model on
a large and multiple dataset could be tested.

5. Conclusions

In this work, we propose RODE using long-term EEG
for the outcome prognosis of patients after cardiac arrest.
Our objective is to reduce overfitting in deep learning,
a crucial step with the potential to significantly enhance
the modeling of physiological time series, including EEG,
ECG, PPG, PCG, PSG, and more.
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