Prediction of spiral-tip trajectories via pseudo-ECGs and LSTM networks
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Abstract

Spiral waves of electrical activation in cardiac tissue
can lead to life-threatening ventricular arrhythmias. The
tracking of the tip of a spiral wave is a problem of cen-
tral importance that can play an essential role in elim-
inating these arrhythmias via methods such as catheter
ablation. We first obtain pseudo-ECGs from our simula-
tions of spiral waves in the two-dimensional, two-variable
Aliev-Panfilov model for cardiac tissue. We then use
these pseudo ECGs in conjunction with Long-Short-Term-
Memory (LSTM) networks to track the tip trajectories of
spiral waves. We demonstrate that our LSTM-based tip-
tracking compares favorably with the Iyer-Gray method,
which requires the full spatiotemporal evolution of spiral
waves to obtain tip trajectories. Our tip-trajectory data in-
clude rigid, meandering, and drifting spiral waves. We use
the Iyer-Gray method to get the spiral wave trajectories
during training and testing. We demonstrate that training
with noise can lead to better results in testing data with
noise. By using an ensemble of 5 LSTM networks, we show
that the number of outliers, in the presence of noise, can be
decreased.

1. Introduction

Sudden cardiac death, the primary cause of death in
the modern world, is often precipitated by the formation
of spiral- or scroll-wave patterns of electrical excitations
in ventricular tissue [1]. Therefore, many experimental
and numerical studies have been performed to understand,
detect, and eliminate such waves [2H5]. Some spiral-
elimination methods, e.g., catheter ablation, require the po-
sition of the tip (or rotor center) of the spiral wave [4,/5].
Several noninvasive methods have been developed for such
tip tracking, for instance, ones that use Electrocardiograms
(ECGs) [41/6,/7]] and others that use machine learning with
ECGs [8,9] or with data from in vitro experiments or in
silico investigations of mathematical models for ventricu-
lar tissue [10L{11].

Recurrent Neural Networks (RNNs) have been used
widely for time-series-based predictions. In particular,
RNNs have been employed with ECGs to classify cardiac

arrhythmias [see, e.g., Refs. [[12l|13[]]. We show that Long-
Short-Term-Memory (LSTM) networks [[14]], developed to
address some shortcomings of earlier RNNs, can help in
tracking the tip trajectories of spiral waves if trained with
pseudo-ECGs. We use a vanilla LSTM network for such
tracking with pseudo-ECGs from our ir silico study of the
Aliev-Panfilov model [15]] for ventricular tissue.

2. Model and Methods

2.1. Aliev-Panfilov model

We obtain spiral waves in the Aliev-Panfilov model [15],
a two-variable partial differential equation (PDE) with a
fast variable u and a slow variable v.

% = ku(l —u)(u—a) —uv + DAu;
ov myv
5% = (e m2+u)(—v—ku[u—(b+1)])- ()

u models the behavior of the transmembrane potential and
v the averaged effects of ion channels; a, b, m1, ma, k, and
€ are parameters, A is the Laplacian, and D is the diffu-
sivity. We use Neumann boundary conditions on a square
domain with 1282 grid points; and we solve these PDEs
by using the forward-Euler method for time-marching,
a 5-point stencil for the spatial Laplacian, a time step
dt = 0.07, and a space step dz = 0.6 [in dimensionless
units that correspond to 0.28ms and 0.6mm [16], i.e., a
76.8 x 76.8mm? domain].

2.2. Pseudo ECG

We calculate the Pseudo-ECGs [17] at time ¢

ECG(t) = Z Su;(t).d?.cos(;)
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where R?; is the distance between the current dipole at loca-
tion 7 and the position of lead where the ECG is measured,
ou is the voltage difference between the transmembrane
potentials of the neighboring cells, d is the distance be-
tween cells, 0; is the angle between the current dipole at
location 7 and the vector joining it to the lead position, and
the summation is over the entire domain.
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Figure 1. Left panel: Pseudocolor plots of u showing a spiral wave in our in silico study of the two-dimensional (2D)
Aliev-Panfilov model @) and the 3 representative locations, A, B, and C, at which we calculate the pseudo—ECGs@ Middle
panel: Pseudo-ECGs (red, blue, and green lines; normalized) from A, B, and C arising from spiral waves in Eq. (I). Right
panel: Our LSTM neural network, whose inputs are the pseudo-ECGs and the outputs are spiral-center locations (X p, Yp).

2.3. Data generation and processing

We use the Aliev-Panfilov model with the parameters
of Ref. [18], i.e., Kk = 8.0,b = 0.1, ¢ = 0.01, ml =
0.2, m2 = 1.3, and a € [0.1,0.2], which allow us to ob-
tain rigidly rotating or meandering spirals. Spatial gra-
dients in a lead to drifting spirals. We use a(z,y) =
ap+(0a(z,y)/0x)xx+(da(z,y)/y)*y; for a given spi-
ral trajectory, ag and these partial derivatives are fixed; but
they are chosen (uniformly) randomly to generate different
spiral trajectories such that a(z,y) € [0.1,0.2]. We ini-
tiate the spirals with broken-wavefront initial conditions.
We re-scale our pseudo-ECG and spiral-tip positions such
that they lie in the range [—1, 1] before we feed them into
the LSTM network.

2.4. Spiral-tip tracking: Iyer-Gray method

We use the Iyer-Gray method [[11] to track the spiral tip.
We calculate the phase

0 — tan—l <u(t+7)—u,n)’ 3)
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where wu(t), u(t + 7), and u,, represent, respectively, the
voltage at times ¢, ¢ + 7 and the mean voltage. The points
around which the condition

7{ VO.dr = £2r )

is satisfied yield the locations of spiral tips.
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Figure 2. Schematic diagram of our LSTM network, with
X* the input at time ¢, and C* and C*~! cell states at ¢ and
t — 1, respectively, Y, Y*~! is the output at ¢ and ¢ — 1.

2.5. Long short term memory network

The schematic diagram of our vanilla LSTM block
[Fig. 2] shows its 4 main components: cell, and forget,
input, and output gates. The LSTM cell state [C"* in Fig.
leads to a gradient highway along which information can
propagate over a large sequence of input data; this circum-
vents the vanishing-gradient problem [[14]. Y and Y*~! in
Fig.[2]are the outputs of the LSTM at time steps ¢ and ¢ — 1;
and X' is the input. For LSTM, we use Tensorflow [19].

3. Results

We consider rigidly rotating spirals that have small
cores, meandering spirals with larger cores, and drifting
spirals. We use 20000 trajectories (1000 points each) for
training. In Fig. |3| (a), we show some test trajectories
(1000 points each), of the 5000 we employ for testing. We



SNR D, D,
dB [Trained: no noise] [Trained: SNR 5dB]
00 1.26 + 0.60 4.46 £+ 3.86
[0.76mm + 0.36mm] | [2.68mm =+ 2.31mm|
30 4.80 £+ 3.67 5.05 £+ 4.36
[2.88mm =+ 2.20mm] | [3.03mm =+ 2.61mm]
25 10.52 £ 7.14 5.08 £4.38
[6.31mm + 4.28mm)] | [3.05mm =+ 2.63mm]
20 17.894+10.68 5.14 +£4.38
[10.73mm =+ 6.41mm] | [3.08mm + 2.63mm]
15 26.08 +13.15 5.30 £4.42
[15.65mm =+ 7.89mm)] | [3.18mm =+ 2.65mm]
10 39.06 &+ 16.63 6.02 £4.69
[23.44mm + 9.98mm)| | [3.61mm =+ 2.81mm]
5 52.584+20.98 8.72 +5.65
[31.55mm + 12.59mm] | [5.23mm =+ 3.39mm]

Table 1. Dps [Eq. (E])] for LSTMs trained without noise
[column 2] and with SNR = 5 dB [column 3] and tested
on data with noise [column 1]; D, is in grid points and
dimensioned units [in square brackets].

store the pseudo-ECG and tip locations every 10 steps; the
pseudo-ECG time series [length 50] is the input, and the
spiral-tip location at the final time is the output. We use
single-layer LSTMs [512 nodes each], train them for 40
epochs, and use the root-mean-square loss function and the
L5 regularizer.

D= X=X, 2+ (Y =%)2), )

measures the average deviation of the spiral tip (Xp, Yp),
predicted by our LSTM, from the Iyer-Gray prediction
(X,Y), for a given trajectory ({-) is the average over a
trajectory). We present our results for 5000 trajectories in
Table|l} column 2 is for data with no noise in training and
testing with varying noise. To study the effects of Gaussian
noise, we calculate the signal-to-noise ratio [20]

>, (ECG (1)

SNR = 101log;, 5
>, (ECG(t) — ECG'(t))

, (6)

where ECG(t) and ECG'(t) are the pseudo-ECG with
and without noise. We train our LSTMs with SNR 5dB
data, test them on SNR 30, 25, 20, 15, 10,and 5 dB, and
give our results in Table m column 3, which shows the
improvement in performance with noise-trained LSTMs.
We define outliers as the points whose predictions have
deviations > 3D,. When training and testing our LSTMs
without noise, ~ 0.4% of our data show outliers. The per-
centage of outliers increases with the noise level: when
training and testing with SNR = 5 dB, the outlier percent-
age ~ 2.69%, which we can reduce by using an ensemble

of LSTM networks as follows. We train 5 LSTM networks
independently, with SNR = 5 dB; and we obtain the final
prediction by averaging over these 5 networks; this reduces
the outlier percentage to ~ 1.46% [Fig [3} right panel]:
The closer the predictions are to the mean, the fewer the
outliers.

4. Conclusions

We develop an LSTM-based tracking method for the
tip-tracking method for spiral waves in the Aliev-Panfilov
model (I). Our LSTM-based tip-tracking compares fa-
vorably with the Iyer-Gray method, which requires the
full spatiotemporal evolution of spiral waves; e.g., we use
LSTM predictions with the inputs of size 150 [50 points
from 3 leads], whereas the Iyer-Grey method requires in-
formation from 16834 = 1282 grid points. We use the
Iyer-Gray method to get the spiral wave trajectories during
the training and testing of our LSTMs. We demonstrate
that training with noise can improve results in testing data
with noise. By using an ensemble of 5 LSTM networks, we
show that the number of outliers, in the presence of noise,
can be decreased. It would be useful to extend our LSTM-
based tip-tracking method to spiral waves in biophysically
realistic mathematical models for cardiac tissue.
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Left panel: (a) illustrative test trajectories; (b) LSTM predictions [trained and tested without noise] for these

trajectories; (c) and (d): predictions for the cases where the LSTM is trained without noise and with noise [SNR = 5 dB]
and tested on SNR = 20 dB. (e) and (f): as in (c) and (d) but for tested with SNR = 10 dB. Note that predictions are
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the predictions from the mean. [We train 5 LSTM networks independently, with SNR = 5 dB; we obtain the final prediction
by averaging over these 5 networks (and order these predictions in increasing order of their distance from the mean (1-5));
this reduces the outlier percentage to ~ 1.46%. The closer the predictions are to the mean, the fewer the outliers.]
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