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Abstract

We develop a deep-learning-based algorithm to predict
the probability of recovery of a comatose patient who has
suffered a heart attack by analyzing electroencephalogram
(EEG) and electrocardiogram (ECG) data. These have
been provided to participants in the George Moody Phy-
sionet Challenge (2023); our team name is RPG@IISC.
Given EEGs and ECGs, we extract, from hour-long traces
for each patient, the burst-suppression (BS) rate, inter-
channel EEG correlations, time intervals between suc-
cessive peaks of ECG, and associated heart variability
rate (HVR) metrics. We also use other information pro-
vided, e.g., patient age, sex, return of spontaneous circula-
tion (ROSC), in-hospital or out-of-hospital cardiac arrest,
presence of a shockable rhythm, and targeted temperature
management. With these features, we then use combina-
tions of convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks to make predictions
of (a) the probability of recovery P and (b) the cerebral
performance category (CPC), at hourly scales; we then
combine these hourly results to predict final values for P
and CPC. In the official phase, when evaluated at 72 hours
after ROSC, the score obtained by our algorithm on the
hidden-validation data and hidden-test data is 0.63, and
0.43(ranked 24th), respectively.

1. Introduction

After a heart attack, a significant number of patients be-
come comatose [1]. During this comatose period, an ef-
ficient diagnosis of the condition of the patient is crucial
for predicting the probability of recovery P and the opti-
mal treatment. Hence, it is essential to collect patient data
continuously for careful analysis. Electroencephalography
(EEG) recordings from patients play a vital role here [2–4].
However, they lead to very large data sets, whose com-
plexity and analysis pose considerable challenges for all
except a limited number of specialist clinicians. There-
fore, automated-data-analysis techniques can help greatly

to extract P from these recordings.
Some recent studies have obtained machine-learning-

based predictions of outcomes for post-heart-attack co-
matose patients [see, e.g., Refs. [5, 6]]. These approaches
focus on extracting features from EEG data sets, which are
then used to predict neurological recovery. We build on
these studies by developing an efficient machine-learning
algorithm that extracts features from the EEG, ECG, and
other patient data to predict P and the cerebral perfor-
mance category (CPC) [7], for a patient who is recovering
from a coma after a heart attack, at hourly scales; we then
combine these hourly results to predict the final values for
P and CPC. For our analysis, we use the data that have
been provided to participants in the 2023 George Moody
Physionet Challenge [8, 9]; our team name is RPG@IISC.

2. Methods

The challenge database [10] consists of information on
1020 patients; data for 607 patients have been made avail-
able to develop models; the remaining data (hidden) have
been used for the validation and testing of these models.
To develop our machine learning algorithm, we use some
commonly studied metrics that are used to analyze EEG
and ECG data. During the unofficial phase, 18-channel
EEG data were provided; and in the official phase, 22-
channel EEG data [Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3,
C4, T5, T6, P3, P4, O1, O2, Fz, Cz, Pz, Fpz, Oz, and F9
channels] and 5-channel ECG data [ECG, ECG1, ECG2,
ECGL, and ECGR] were provided. We use the following
metrics:
1. Burst-suppression [11, 12] (BS) patterns, with the BS
rate [12], in an interval of EEG, quantified as

BS rate =
time EEG spends below a specified threshold

total time interval
(1)

2. We quantify inter-channel EEG correlations using Pear-
son’s correlation [13].
3. We measure the EEG background activity (EBA) in our
EEG data [14, 15] with power spectral density of α, β, δ,
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Figure 1. Representative EEG and ECG features: (a) Inter-channel EEG correlations [here a 19× 19 matrix, EEG channel
numbers 0 − 18 label channels Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz, Cz, Pz arranged
in this order]; (b) EEG background activity: the first 60 entries of the power-spectral densities of δ, θ, α, and β waves,
concatenated in this order [i.e., for 19 channels we have a 19×60 matrix]; (c) the burst-suppression (BS) rate matrix for 19
channels and the first 120 epochs (a 19× 120 matrix); (d) 2000 entries of time intervals (RR-Intervals) between successive
peaks in the ECG data, separated by at least 0.4s.

and θ waves with frequency ranges 8−12 Hz, 12−30 Hz,
0.5− 8 Hz, and 4− 8 Hz respectively.
4. ECG data: we calculate the time intervals between suc-
cessive peaks, separated by at least 0.4 s (RR-intervals),
and use these to quantify heart rate variability (HRV) [16]
metrics, e.g., the mean, standard and root-mean-square de-
viations of these intervals, and the percentage of adjacent
intervals that differ by 50 ms.
5. Additional patient features: age [given as an integer];
sex [100-female, 010-male, and 001-other]; return of spon-
taneous circulation (ROSC) in minutes; in-hospital or out-
of-hospital cardiac arrest; the presence of a shockable
rhythm [0 if false and 1 if true]: and targeted temperature
management (TTM) [33, 36, or NaN for no TTM ]; i.e., a
total of 8 entries.
6. Our output data employ two metrics to quantify the re-
covery: (1) Patient outcome: 0 if the patient recovers favor-
ably (good outcome) and 1 otherwise; (2) cerebral perfor-
mance category (CPC) [7]: 1 - good recovery; 2 - moderate
disability; 3 - severe disability; 4 - unresponsive wakeful-
ness syndrome; 5 - death. [CPCs 1 or 2 - good outcome;
and CPC of 3, 4, and 5 - poor outcome].

We use 1D Convolutional neural networks (CNNs) and
Long-short-term memory networks (LSTMs) [Fig. 2]. In
our CNNs, we first have a convolutional layer with 256
filters, kernel size 2 × 2, and a max-pool layer with pool
size 2× 2 and the ReLU (Rectified Linear Unit) activation
function. We then add a convolutional layer with 64 filters,
with kernel size 2×2 and the ReLU activation function; the
flattened output from the previous layer is passed through

a dense layer of 64 nodes, followed by another dense layer
of 32 nodes, and with 2 nodes in the final layer. We use
the mean-squared-error loss function and the Adam Op-
timizer to update weights. We use variable length, single-
layered LSTM with 128 nodes and 2 output nodes, with the
mean-squared-error loss function and the Adam Optimizer
to update weights. The CNN and LSTM architectures are
the same throughout (not optimized) for simplicity. We
implement these algorithms with TensorFlow [17].

To train our CNNs for Pt, the probability of recovery,
and Ct (CPC), based on data provided at hour t [with each
hour of the patients’ data, we assign their output data as
training labels], we use EEG features 1 − 3 as inputs and
combine all the channel features for these inputs. We train
separately for the features from each channel of ECG, as
the available channel data vary significantly from patient
to patient. We train with an array of intervals of successive
differences of peaks, separated by at least 0.4 s, from the
ECG as inputs to our CNNs. Below, we outline different
methods we use in this study to arrive at the final outputs.

• M1: In an hour, we consider the cleanest 5 minutes of
EEG data in the unofficial phase of the challenge; this re-
quires 30000 × 18 matrices [30000 points in the time se-
ries recording (100 Hz sampling frequency) for each of
the 18 EEG channels]. We reduce the dimensionality of
the data by extracting EEG features. To get the BS rate,
we consider 30 epochs [30 intervals of 10s with 1000 data
points each] to calculate the fraction of the EEG below the
1.56mV threshold [not optimized]. With all the 18 EEG
channel data combined, we have a 30× 18 representation.
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Figure 2. Schematic diagram of our algorithm: The features extracted from EEG data: burst-suppression (BS) rate,
background activity (EBA), inter-channel correlation matrix (Corr), and the array of time intervals between two successive
peaks in the ECGs (RR-intervals: RRI-0, RRI-1, RRI-2, RRI-L, RRI-R corresponds to five different ECG channels), are
fed as inputs into the 1D CNNs (CNN1-CNN8) from the hourly data [It stands for input at hour t]; CNN1-CNN8 are
trained to predict the probability of recovery Pt and the CPC, i.e., Ct at hour t. We feed (Pt, Ct, t) into LSTM2-LSTM9
and train them to predict the final outcome for each feature-(PF , CF ). LSTM10-LSTM14 are trained to predict (PF , CF )
with heart rate variability metrics [HRVt-0, HRVt-1, HRVt-2, HRVt-L, HRVt-R, for 5 ECG channels] as inputs. LSTM1
is trained with additional patient data (age, sex,.. etc.) as inputs. Then we average over all the features (only EEG or both
EEG and ECG features): ⟨PF ⟩ and ⟨CF ⟩, to get the final probability of recovery P and CPC (C)).

For each channel, we concatenate into one vector of length
85 the α, β, δ, and θ power spectral densities (PSDs) cal-
culated via the Welch method; thus, 18 channels yield an
85×18 matrix. Inter-channel correlations yield an 18×18
matrix. We replace all missing data with their average val-
ues. We feed Pt, Ct and t into our LSTM networks and
train them to obtain the predictions PF and CF for each
feature. Furthermore, we use LSTMs to predict patient
outcomes for the additional patient features. Then we av-
erage over all the features [⟨PF ⟩ and ⟨CF ⟩ in Fig. 2] to get
the final probability of recovery P and CPC (C).
• M2: The input features for M2 are the same as those for
M1. We split the training data into two parts and trained
two separate sets of CNNs to make the hourly predictions
Pt and Ct. The CNNs are trained on one set; they are then
used to predict Pt and Ct on the other set. The LSTMs are
then trained on these data to predict the final outcome for
each feature. We use the same strategy as in M1 to get the
final P and CPC (C)).
• M3: In an hour, we consider EEG inputs up to a max-
imum size of 600000 × 19 [600000 points in time series
recording (sampling frequency from 250 − 528 Hz) for
each of the 19 EEG channels] as the available data sizes
vary in the official phase. The EEG signal is then band-
pass filtered; this removes frequencies outside 0.1Hz-30Hz
[we apply a notch filter to remove the utility frequency if it
lies in the range 0.1Hz-30Hz] and reduced to a maximum
size of a 300000 × 19 matrix [normalized in the range [-

1,1], with a re-sampled frequency of 128 Hz]. We use the
BS rate for 120 epochs with 0.25 as the threshold [which
gave the best results] for each 10s interval; the combined
data for all channels yields a 120 × 19 [Fig. 1(c)] matrix.
EBA is quantified as in M1; the input size of the EEG time
series is not constant, so the PSD vector has a variable
length; we considered the first 60 entries for each chan-
nel (not optimized) yielding a 60 × 19 matrix [Fig. 1(b)];
the inter-channel correlation matrix yields a 19×19 matrix
[Fig. 1(a)]. The final P and CPC are inferred as in M1.
• M4: EEG input features are the same as that of M3; in
addition, we consider ECG data from 5 channels. We cal-
culate the first 2000 intervals between peaks [Fig. 1(d)] in
the hourly ECG data and then train the CNNs to output Pt

and Ct. We then train LSTMs with Pt, Ct and t, as inputs,
to predict P and CPC. We also train some LSTMs to pre-
dict outcomes with HRV and time t. We then average these
predictions as in M1.
• Other methods: We have also looked at methods in
which the final predictions are obtained by taking the av-
erages of Pt and Ct, over both times and features [for both
ECG and EEG features]; however, the performances of
these methods are inferior to M1 and M3.

3. Results

In the challenge, the algorithms were evaluated with the
true positive rate at a false positive rate of 0.05 as the scor-



Method Training Validation test
M3 0.41 0.63 0.43 (rank: 24)
M1 0.45 0.61 -
M2 0.32 0.38 -
M4 0.27 0.28 -

Table 1. Scores [true positive rate at the false positive
rate of 0.05] on the training-cross-validation data, hidden-
validation and test data for methods M1-M4 when evalu-
ated at the end of 72 hours.

ing metric [9]. When trained on the cleanest 5-minute
data set [unofficial phase] and evaluated at 72 hours after
ROSC, our method M1 gave a score of 0.45 on the train-
ing cross-validation data and a score of 0.61 on the hidden
validation data. On replacing M1 with M2, these scores
deteriorated to 0.32 and 0.38, respectively, so we did not
use method M2 during the official phase. During the offi-
cial phase, we used method M3, with only EEG data, and
M4, with both EEG and ECG data. At the end of the first
72 hours after ROSC, we obtained a score of 0.63, with
M3, and 0.28, with M4, on the hidden-validation data [see
Table 1]. M3 obtained a score of 0.43 (ranked 24th) on the
hidden-test data.

4. Discussion and Conclusions

We have explored our models with only EEG features
and with both EEG and ECG features. Our algorithms
have performed best with EEG features, and the inclusion
of ECG data has not increased their performance; this is
consistent with most of the other teams, as the majority of
the algorithms presented in the challenge used only EEG
data. Our work can be extended by tuning model param-
eters, optimizing CNN and LSTM architectures, and by
including feature cross-correlations.
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