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Abstract 

This paper presents a deep learning-based approach to 
detect mental stress from electrocardiogram (ECG) 
signals. The proposed method employs data augmentation 
and a shallow deep learning architecture combined with 
convolutional neural networks (CNNs) and long short-
term memory (LSTM) networks. The model was trained 
and validated using 132 records collected from 22 healthy 
subjects. The proposed approach achieves an accuracy of 
75%, sensitivity of 70.37%, specificity of 84.62%, 
precision of 90.48%, and f1-score of 79.17% in detecting 
mental stress from ECG signals. This study highlights the 
significance of using a combination of CNN and LSTM 
networks to achieve ECG-based stress classification. The 
proposed method has potential applications in the field of 
mental stress monitoring and management. 

 
1. Introduction 

Mental stress is a prevalent health issue that can lead to 
various health problems, including cardiovascular diseases 
[1]. Electrocardiography (ECG) is a non-invasive technique 
that can be used to monitor the electrical activity of the heart 
and has been shown to be effective in detecting stress-
related changes in heart rate variability (HRV) and other 
ECG parameters [2]. Recent studies have proposed various 
machine learning [1], [3], [4], [5], [11] and deep learning 
[2], [8], [9], [10], [10] methods for stress detection. The 
mental stress of college students and its correlation with 
exam pressure and internet usage were assessed using four 
classification algorithms to evaluate performance in [1]. 
Kang et al. [4] proposed a method for classifying ECG data 
into four emotional states based on stress levels using 
support vector machine and naive Bayes algorithms. The 
proposed model improved the accuracy by 8.7% compared 
to the previous stress classification algorithm. The study 
showed that quantifying stress signals experienced by 
people can facilitate more effective management of their 
mental state. In another study [10], the author proposed a 
pre- and post-processing technique to reduce the negative 
effects of invalid inter-beat intervals in cardiac signals, 

improving the accuracy of HRV features for mental 
workload assessment. In [5], author utilized machine 
learning models to classify stress levels based on various 
physiological sensor data, the random forest classifier 
outperformed other models for both binary and multi-class 
classifications. In [11], Huang et al. suggested a k-nearest 
neighbor (KNN) based model that utilized HRV features 
for detecting the state of mental fatigue. They achieved an 
accuracy of 75.5% in identifying the mental fatigue state. 
ML-based techniques in stress detection from ECG signals 
are often considered less efficient due to the manual 
extraction of features, which has inherent limitations. The 
process of selecting the most important features becomes 
challenging, as various studies have shown that the 
significance of features can vary across different datasets 
and models.  

 Behinaein et al. [2] proposed a deep neural network 
based on convolutional neural network (CNN) and the 
transformer mechanism for detecting stress using ECG 
signals. This model was validated using two publicly 
available datasets, it required a small amount of data for 
calibration for the generalization to detect the unseen 
subjects. Two studies [8], [9] proposed multimodal fusion 
approaches using CNNs for subject-independent stress 
detection using ECG and electrodermal activity (EDA) 
signals, achieving higher accuracy than existing models. 
Kuttala et al. [5] proposed a multimodal hierarchical CNN 
feature fusion approach for stress detection using ECG and 
EDA signals. This approach fused low, mid, and high-level 
features automated extracted from CNN to obtain a 
comprehensive feature representation. The multimodal 
transfer module also used for multimodal fusion. It 
outperformed the existing models on four benchmark 
datasets by 1-2% and showed that the hierarchical feature 
set from all three levels were the most effective feature to 
distinguish stresses. Most of the above approaches used 
multiple physiological signal such as ECG and EDA.  

In this work, we propose a CNN and LSTM based 
shallow architecture to detect stress using only ECG signal. 
To reduce the data imbalance, the data augmentation 
technique was employed to minority class to reduce the data 
imbalance and improve the model’s performance.  



2. Materials and Methods 

2.1. Data description  

We have used publicly available Mental Arithmetic 
Stress Dataset (MAUS) [12] in this work. The data were 
recorded using Procomp Infiniti device with a focus on 
collecting different physiological signals under different 
mental stressed conditions. The dataset contains 132 
recordings of ECG, PPG, ACM, and EDA signals collected 
from 22 individuals each for a duration of 35 minutes. 
Among them we have used ECG signals for stress 
monitoring. The N-back task was used to elicit different 
mental workload to the participants. In this task, 
participants were asked to memorize a sequence of one-
digit number and respond by pressing the space bar when 
a stimulus matched the n-th number preceding it. The task 
difficulty was increased by adjusting n, stimulating 
different levels of mental workload. The 2- and 3-back 
tasks were considered high mental workload states, while 
the 0-back tasks were evaluated as low mental workload 
states. The ECG signals were sampled at a sampling rate 
of 256 Hz. The detailed information of the dataset is 
demonstrated in Table 1. 

 
Table 1. The demographic information of MAUS dataset. 
  
Variable MAUS 
Subjects  22 
Gender (Male/Female) 20/02 
Age (mean±SD) years 23 ± 1.7 
No of trials per subject 6  
Total trials 132 
Time per trial 5 minutes 
Total trials 35 minutes (5 min resting) 
Frequency  256 Hz 

# SD: standard deviation 
 

2.2. Preprocessing 

     Before the ECG signal analysis, a pre-processing step 
was applied to the raw data to remove the artefacts, 
followed by zero mean and unit variance normalisation. An 
example of pre-processed normal and stressed ECG signals 
is illustrated in Fig. 1. 

 

 
Figure 1. The example of ECG signal recorded at normal 
(top) and stress condition (bottom).  
 
2.3. Data augmentation 

   The data augmentation process was utilized to increase 
the minority classes. A shifting-based approach was 
applied to augment the data. The data augmentation was 
deployed only during training the deep learning model to 
reduce the biases to a specific class by balancing the 
classes. The details of the data augmentation process are 
demonstrated in Fig. 2. 
 

 
Figure 2. The data augmentation process. The training data 
was augmented to increase the minority class. 
 
2.4. Deep learning model 

    The proposed model consists of a series of 
convolutional and recurrent layers, fully connected layers 
and a final output layer, as shown in Fig. 3. The first 
convolutional layer has 32 filters with a kernel size of 5 
and ReLU activation function, followed by a max pooling 
layer with a pool size of 2 and a dropout layer with a rate 
of 0.3. The second convolutional layer has 64 filters with a 
kernel size of 5 and ReLU activation function, followed by 
another max pooling layer with a pool size of 2 and a 
dropout layer with a rate of 0.35. The third convolutional 
layer has 128 filters with a kernel size of 5 and ReLU 
activation function, followed by another max pooling layer 
with a pool size of 2 and a dropout layer with a rate of 0.4. 
The subsequent LSTM layer has 64 units with return 
sequences set to True, followed by a flattened layer. The 
dense layers have 256 and 128 units, respectively, with 
ReLU activation function and L2 regularization with a 
weight decay of 0.01. A dropout layer with a rate of 0.35 
follows each dense layer. Finally, the output layer has 1 
unit with a sigmoid activation function. 



 
Figure 3. An illustration of the proposed method for stress 
classification using ECG signal. 

 
2.5. Performance Metrics 

We have used 70% of total recordings for training the 
model and rest of data for testing. The model performance 
was evaluated using five performance metrics: accuracy, 
sensitivity, specificity, precision, and F1-score. 

 
3. Results and Discussion 

     The proposed model showed 70% accuracy, 100% 
sensitivity, 7.69%  specificity, 69.23% precision, and 
81.81% F1-score to identify stress using ECG. Since the 
data were imbalanced, the specificity was very poor, and 
the model was biased to one class. To reduce the biases of 
the model, we applied the data augmentation technique 
before training the model. The data augmentation process 
significantly improved the specificity from 7.69% to 
84.62% as well as the overall classification accuracy from 
70% to 75%. In Fig 4 and Fig. 5 the confusion matrix 
illustrated the performance of the proposed model before 
and after data augmentation respectively. The performance 

evaluations of the proposed model before and after data 
augmentation are demonstrated in Table. 2.  

 
Figure 4. The confusion matrix of the proposed model 
without data augmentation. The model was highly biased 
due to data imbalance.  

 
Figure 5. The confusion matrix of the proposed model with 
data augmentation. The biasness of model with majority 
class was adjusted using data augmentation.  

 
Table 2. The performance evaluations of the proposed 
model before and after data augmentation. Here, Acc, Sen, 
Spe, and Pre represent the accuracy, sensitivity, 
specificity, and precision, respectively. 
 
Augmen

tation Acc Sen Spe Pre F1-
score 

No 70% 100% 7.69% 69.23% 81.81% 

Yes 75% 70.37% 84.62% 90.48% 79.17% 
    The CNN layers helped to learn patterns from the ECG 
signals such as the shape, frequency, and amplitude of 
different ECG waveforms like P, Q, R, S and T waves. The 
CNN layers helped to capture these at different scales and 
orientations, making the model more robust to variations 
of input signals. ECG signals are time series data, and there 
can be variation in the timing, duration, and amplitude of 
different waveforms due to factors like heart rate, age and 
health condition. The long-term dependencies and 
temporal pattern present in the ECG signals captured by 
LSTM layer, which helped to improve the model 
performances. The loss vs. epoch curve shown in Fig. 6 



illustrates the progressive reduction in the loss function as 
training epochs increase, indicating the model's enhanced 
capability to minimize the disparity between predicted and 
actual values. This displays an initial rapid decline, 
followed by a more gradual convergence towards a 
plateau. 

 
Figure 6. The training and testing loss per epochs. The 
training and testing losses sharply decreases up to 15 
epochs. It became steady state and increases above 25 
epochs.  
 

This study observed that increasing the number of CNN 
layers led to overfitting, while using a lower number of 
layers resulted in underfitting. The inclusion of LSTM 
layers played a crucial role in capturing temporal patterns 
in ECG signals, thereby improving accuracy. Without 
LSTM layers, the model's performance suffered. 
Moreover, employing smaller kernel sizes in the initial 
CNN layers facilitated the capture of local patterns, while 
larger kernel sizes in subsequent layers enabled the 
extraction of global patterns, ultimately enhancing overall 
performance. These findings underscore the importance of 
carefully selecting the number and type of layers to achieve 
precise stress detection.  

Overall, the proposed model shows promise for 
identifying stress using ECG signals. However, further 
optimization and validation on larger datasets are 
necessary to assess the generalizability and robustness of 
the proposed model. 
 
4. Conclusion 

    In this study, a novel approach based on CNN-LSTM 
based deep learning model has been proposed for the 
detecting the mental stress using ECG signal. The data 
augmentation was performed to handle the data imbalance 
and improve the model performance. The results obtained 
using the proposed approach demonstrated a robust and 
promising performance for stress identification. Future 
work will involve incorporating respiratory signals along 
with cardiovascular signals to identifying stress and the 
level of stress.  
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