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Abstract

Personalized cardiac models are crucial intervention
tools for a multitude of cardiac health issues. As car-
diac simulations become more complex and expensive, ma-
chine learning (ML) models demonstrated the potential to
enable efficient model personalization and cardiac tissue
parameter estimation. Prior studies however depend on
“globally” accurate ML models trained with large simu-
lation data to predict tissue parameters. Such a global ML
model is not only expensive to train, but its success also
relies on the assumption that real-world data would fall
within the range of the training data. We establish a novel
active-learning method for cardiac parameter estimation
by steering the training of the ML model towards the un-
known region of interest in the parameter space.

1. Introduction

Personalized cardiac models plays a pivotal role for de-
signing effective intervention strategies for multiple car-
diac problems [1–3]. In recent years, there have been de-
velopment in the area of machine learning based surrogate
models [4–6] that provide accurate estimation of various
cardiac parameters. Such models are assumed to be ”glob-
ally” accurate after training on a large amount of labelled
data. These models, however, pose two important limita-
tion. First, acquisition of large amount of labelled data to
train the model is very expensive. Second, parameter esti-
mation using such models inherently assume that the real
world data would fall under the scope of training data used
to acquire the ”global” perspective of cardiac mechanism.

In this paper, we propose a novel active-learning method
for cardiac parameter estimation that tackle these limita-
tions. We train a machine learning model using limited
set of labelled data, and augment the labelled exploiting
the predictive uncertainty on the test data. This process is
driven with a particular focus on guiding the training pro-
cess towards the unknown region of interest in parameter

Figure 1. Block diagram of of the proposed method.

space. By doing so, we are able to train a model with lim-
ited labelled data but covering a larger scope of parameter
space based on test-data.

We evaluated our method on healthy heart data from
MedalCare-XL dataset [7]. The dataset includes 16900
data from 13 patients equally distributed into the 8 groups
(healthy control and 7 cardiac pathologies) [7]. Each data
has 20 dimensional parameter space that represents impor-
tant concepts like the activation location, action potential
duration, etc. The data also includes 12-lead ECG data
lasting 10s sampled at 500 Hz. We compared our method
with a MLP based ”global” model trained on large training
set to learn the parameters from the input ECGs. The re-
sults demonstrate an improved accuracy of parameter esti-
mation in our method compared to a global-ML model that
too using limited labelled training data size.

2. Method

The ECG signals are considered as a function of 20 car-
diac tissue parameters which represent the pacing site on
the left and right ventricles, action potential duration pa-
rameters, etc.



y = M(θ1, θ2, ..., θ20) (1)

where y is the ECG signal, M is the simulation model
and {θi}20i=1 are the cardiac tissue parameters.

2.1. Active Learning

The overview of the proposed active learning method
is shown in Figure 1. Active learning involves first train-
ing an initial model on limited labelled data. Next, us-
ing the trained model, we estimate the cardiac parameters
for given ECG signal and match the predicted signal with
ground truth signal to get an error estimate as an objective
function. We add the set of parameter estimated and pre-
dicted signal to the labelled data and retrain the model to
update it. This process is repeated until the error estimate
converges. By adding back the estimates along the way,
we constantly explore the unknown region of interest and
allow the model to refine on limited data in comparison to
requirement of large labelled data upfront. We now look at
the training and parameter estimation steps in detail.

2.2. Initial Model Training

Consider L = (xi, yi)
|L|
i=1 be the initial labeled data

where x represents the tissue parameters, y represents the
ECG signal and |L| is the initial labelled data size. Let
T = (xtest, ttest) be the test data where for given ytest
ECG signal we need to estimate the parameter as close as
possible to the ground truth xtest.

We initially train a base model f(x) on the labelled data
L to learn the forward relation from cardiac parameters to
the ECG signal as depicted in 1. We try to reduce the error
between the prediction ypred and ground truth y.

Loss =
1

|L|

|L|∑
i=1

(yi − ypredi
) (2)

We train the model with dropout [8] which is known to
model predictive uncertainty [9].

2.3. Parameter Estimation

Our main task is to estimate the cardiac parameter xest

such that the corresponding predicted ECG yest is as close
as possible to the actual ECG. This error between the test
ECG ytest and yest is defined as the error E:

E = ||ytest − yest||2 = ||ytest − f(xest)||2 (3)

Thus, our new objective function becomes:

xest = argminxE(ytest, yest) (4)
= argminx||ytest − f(x)||2

We begin with a sample point of parameter xest within
the bounds of the parameter space x. The initial trained
model provide us with ensemble of prediction due to the
use of dropout and thus provide us an estimate of uncer-
tainty in the error E. We can now use optimization method
like Bayesian optimization to optimize for the cardiac pa-
rameters.

EI(x) = (µ(x)− E+)Φ(
µ(x)− E+

σ(x)
) (5)

+σ(x)ϕ(
µ(x)− E+

σ(x)
)

where, E+ is the maximum of the objective function
obtained so far, µ(x) and σ(x) are the mean and standard
deviation of the error E respectively, and ϕ and Φ are den-
sity function and CDF of the standard normal distribution
respectively.

3. Experiments and Results

3.1. Setup

Experiments were performed on 1000 healthy sinus
heart data from MedalCare-XL dataset[7]. Each data point
includes 20 cardiac parameters which represented activa-
tion site on left ventricles (anterior endocardium, posterior
endocardium and septum) and right ventricle in UVC coor-
dinate, and action potential duration parameters. Each data
also had a 12-lead ECG signal of 10s duration sampled at
500 Hz. All of the data was split into train data and test
data. The train data was obtained by considering all data
points that lied in intersection of 70% of apicobasal height
and 70% rotation of the heart and the rest was considered
as test data.

The proposed method is compared with a passive
”global” neural network (MLP) model which takes 12-lead
ECG as input and cardiac parameters as the output. Each
ECG signal had 451 time steps thus the input to the MLP is
a 5412 dimensional signal. The structure of the model was
composed as 5412 - 2048 - 1024 - 512 - 20 with a batch
normalization and LeakyReLU signal after each layer. The
network was trained with all of the training data for 300
epochs and tested on both in and out-distribution test-data.

3.2. Results

The proposed method was initially trained on 40 la-
belled data followed by parameter estimation step for 100
epochs. During the process a total of 42 points were added
to labelled data. In comparison, the passive model was
trained with all of the training data (i.e. 300).

The mean relative error for estimated parameter of test-
data are shown in Table 1. The table shows comparison



Figure 2. Estimation of activation sites on left ventricle on two test data (test data identifier 0 and 1) on proposed method
(A) and passive MLP model (B). The red, green and magenta points represent activation site at anterior endocardium,
posterior endocardium and septum respectively. The larger sizes on same color with ’p’ added to identifier indicate the
respective predictions from parameter estimation.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Active Learning 0.05 0.14 0.03 0.05 0.4 0.28 0.56 0.2 0.29 0.79

Passive MLP 0.75 0.58 0.26 0.69 1.25 0.75 1.4 1.1 0.71 3.22

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20
Active Learning 1.05 0.37 0.57 0.34 0.18 0.42 1.02 0.24 0.24 1.21

Passive MLP 2.1 1.71 2.1 0.84 0.92 1.91 3.31 0.82 0.9 2.73

Table 1. Mean relative error over all in-distribution data
across the 20 dimensional parameter space for proposed
method (Active learning) and passive/global model (MLP)

of our-proposed method (Active Learning) with the global
model across all 20 parameters. The results show that our
proposed method has a low relative error on prediction of
cardiac parameter across all dimensions in comparison to
the ”global” model. This shows improved parameter esti-
mation capability of active learning driven model in com-
pare to the globally trained model.

The visualization of activation site on the left ventricle
(anterior endocardium - red, posterior endocardium - green

and septum - magenta) are shown in Figure 2. Figure 2A
shows active learning based method was able to exactly
predict the activation site (shown by the overlap of ground
truth and prediction activation site). The global model, de-
spite being trained with a larger training size, was not able
to capture the activation site as shown inf Figure 2B.

4. Discussion

The quantitative and qualitative results above show the
advantage of our proposed method in comparison to using
a surrogate trained on a large labelled data. We demon-
strate the benefit of our method in two ways. First, in terms
of the number of labelled data required. The global model
was trained on entire training data to learn the relation from
ECG to cardiac parameters but despite such large dataset
the results showed a lacking performance. On the other
hand, the active learning model was trained total of 82 data
points and yet was able to estimate parameters more accu-



rately. This is particularly due to the second benefit of our
method i.e. intelligent search of data to be labelled. During
active learning step, we use the uncertainty in the error be-
tween the ground truth ECG and its prediction to search for
data to be labelled in unknown region in parameter space.
This intelligent steering of simulation to generate next data
to be labelled helps cover a larger scope of parameter space
and updates the model with fewer data than used in the
other surrogates.

5. Conclusion

We propose a cardiac tissue parameter estimation frame-
work for personalized model using an active-learning ap-
proach by exploiting the predictive uncertainty. Experi-
ments showed that the performance of the active learn-
ing based parameter estimation model outperformed ma-
chine learning surrogate on both the number of training
data required as well as the relative error performance. We
showed that exploiting predictive uncertainty allows us to
intelligently select the data required to update the model
and improve estimation of the parameters circumventing
the requirement of large number of training data which is
both expensive and unavailable in almost all situations. Fu-
ture works will examine this observation in a larger cohort
as well as data with cardiac problems.
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