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Abstract

Recent advancements in remote or handheld patient
monitoring devices have led to the development of novel
domain-specific AI architectures that enable more accu-
rate and faster real-time ECG diagnosis. We present a
data-driven framework for decomposition of ECG signals
based on B-Spline Variable Projection Neural Networks
(VPNN) and cascaded residual auto encoders (AE). We
use VPNN with B-spline bases in regressor mode. Hence,
the output of each VPNN layer is an estimation of the in-
put. ECG segment is passed through a set of cascaded
VPNN regressors, where the input of each VPNN layer is
the residual of the ECG segment and the output of its pre-
ceding VPNN regressor. In such a topology, the output of
each VPNN can be interpreted as a component of the input
representing specific frequency and morphological char-
acteristics. The effectiveness of the decomposition frame-
work was demonstrated in detection of ventricular tachy-
cardia (VT) and ventricular flutter (VFL) ECG segments
with a sensitivity rate and a false positive rate of 92% and
9.5%, respectively.

1. Introduction

Conventional heart rhythm analysis techniques of ECG
signals encompass a wide range of human-assisted fea-
ture extraction techniques that are used to derive significant
and illustrative insights about cardiac health. For most of
the morphological and time domain human-assisted fea-
ture descriptors, delineation of ECG waves is a prerequi-
site step. For instance, to calculate RR-intervals and QT-
intervals, QRS waves must be first detected and then the lo-
cations of P and T waves are estimated accordingly. Thus,
the effectiveness of such feature descriptors are highly cor-
related with the beat detection algorithm performance. Al-
ternatively, using spectral analysis it is feasible to perform
both QRS detection and delineation of ECG waves steps in
frequency domain. In both time and frequency domains,
common signal decomposition methods such as Empirical
mode decomposition [1], Wavelet decomposition [2] and
Sparse rational decomposition [3] can be uses as a basis to

enhance discriminatory power of human-assisted feature
descriptors in ECG processing. All of these methods re-
quire a priori knowledge in order to be adapted effectively
to each specific signal and application. To overcome this
limitation, we propose a new signal decomposition tech-
nique which can be trained in unsupervised manner to ad-
just itself into input signals. As a case study, we evaluate
its robustness by applying it to single-channel ECG seg-
ment in order to distinguish ventricular tachycardia (VT)
and ventricular flutter (VFL) arrhythmia from other types
of heart rhythms.

2. Related works

The theory of variable projection (VP) [4] provides a
very effective framework for solving separable nonlinear
least squares (SNLLS) problems of the form

min
θ

r2(θ) := min
θ

∥∥y − Φ(θ)Φ+(θ)y
∥∥2
2
, (1)

where y represents the signal with N samples, and Φ+(θ)
stands for the Moore–Penrose pseudoinverse of the matrix
Φ(θ) ∈ RN×m. For a proper choice of θ, the input signal
y can be well approximated by its orthogonal projection
ỹ(θ) onto the columnspace of Φ(θ), i.e.,

y ≈ ỹ(θ) := Φ(θ)(Φ+(θ)y) = Φ(θ)c(θ), (2)

where c(θ) denotes the coefficients of the underlying pro-
jection. Golub and Pereyra referred to r2 as the VP func-
tional, which has since been widely applied in signal pro-
cessing and related fields [5]. Particularly, this approach
proved to be very efficient in cases when q ≪ m, i.e., a
larger set of linear parameters c(θ) ∈ Rm is controlled by
a small number of nonlinear variables θ ∈ Rq .

The projection in Eq. (1) can be interpreted as a layer
with trainable weights θ, allowing the embedding of the
VP operator into neural network architectures [6]. The re-
sulting VP layer can operate in two modes based on its
output. In regression mode, the projected signal ỹ(θ) is
forwarded to subsequent layers, i.e., the VP layer preforms
filtering on the input signal. In classification mode, the co-
efficient vector c(θ) is forwarded to the next layer, facili-
tating knowledge-driven feature learning. This means that



the VP layer learns how to represent the input signal in the
subspace spanned by the columns of Φ(θ). In addition to
that, expert knowledge can be injected into the network by
selecting the structure and parametrization of the projec-
tor in a way that aligns with the requirements of the target
application.

Note that in Eq. (2), the gradients of both the coefficient
vector c(θ) and the projected signal ỹ(θ) can be explicitly
calculated provided that the partial derivatives of the jth
column of Φ(θ) exist with respect to all coordinates of θ
(see e.g., Lemma 4.1 and Theorem 4.3 in Ref. [4]). In gen-
eral, if the computation of Φj(θ) and Φj(θ)/∂θk is avail-
able for all possible j and k, then the forward and back-
ward passes of the corresponding VP layer can be easily
implemented. In the next section, we define these terms
for free-knot splines.

3. Spline based VP layers

To date, the basic structure of VPNet has been general-
ized to artificial and spiking neural networks (SNNs) [6,7],
and applied to various real-world problems, such as road
abnormality detection [8], classification of cardiac arrhyth-
mias [6] and visually evoked potentials [9]. In these ap-
plications, the VPNet concept was realised by using a
parametrized variation of the classical Hermite functions.
Utilizing our former work [10], we propose a new imple-
mentation of VPNet that is based on free-knot splines.

Splines are smooth piecewise polynomial curves that in-
clude a wide class of functions, such as Hermite, Bézier,
and Catmull-Rom splines. In this study, we will consider
the B-spline basis for representing piecewise polynomial
functions s : [a, b] → R of class Cℓ[a, b] whose shape is
controlled by two parameters: the degree ℓ of smoothness,
and the so-called knot vector τn. B-splines can be defined
recursively as follows:

B0,k(τn;x) =

{
1 if x ∈ [tk, tk+1),
0 otherwise.

(3)

Bℓ,k(τn;x) = (tk+ℓ+1 − tk) · [tk, . . . , tk+ℓ+1] (x− t)ℓ+ ,

where tk ∈ [a, b] are the knots, and (x − t)ℓ+ =
(max {x− t, 0})ℓ denote the so-called truncated power
function (TPF). Note that variable x of each TPF is fixed,
and the (ℓ+1)th divided differences [tk, . . . , tk+ℓ+1] (x−
t)ℓ+ are computed for the second variable t. This formu-
lation allows to compute the partial derivatives of the B-
spline functions Bℓ,k (ℓ ≥ 1) with respect to the free knots
as follows:

∂Bℓ,j(τn;x)

∂tk
= [tj , . . . tk, tk . . . , tj+ℓ+1] (x− t)ℓ+, (4)

provided that j ≤ k ≤ j + ℓ+ 1, and it is zero otherwise.

In order to integrate free-knot splines into the VPNet
framework, we consider a sequence of knots a = t0 <
t1 < . . . < tn−1 < tn = b with the following boundary
conditions:

a = t0 = t−1 =, . . . = t−ℓ, (5)
b = tn = tn+1 = . . . = tn+ℓ . (6)

We fix the outer knots, i.e., t0 and tn, whereas the in-
ner knots t1, . . . , tn−1 are assumed to be variable. Now,
we connect Eq. (1) and Eqs. (3)-(4) by defining the
parametrized knot vector:

τn(θ) := (t−ℓ, . . . , t0, θ1, . . . , θn−1, tn, . . . , tn+ℓ)
T , (7)

where tk = θk (k = 1, . . . , n−1) hold for the inner knots.
Then, the forward and backward passes of the correspond-
ing spline based VP layer can be implemented by taking

Φj(θ) = Bℓ,j(τn(θ)),
∂Φj(θ)

∂θk
=

∂Bℓ,j(τn(θ))

∂θk
, (8)

where the B-splines Bℓ,j are sampled uniformly on the in-
terval [a, b] with N samples, thus we have omitted x from
the notation. The number of free knots n, and the degree
of smoothness ℓ are treated as hyperparameters, which also
determine the dimension of the coefficient vector c(θ) that
is m = n + ℓ in Eq. (2). These hyperparameters must be
set before training such VP layers.

Due to their flexibility, splines have a wide range of ap-
plications including computer aided design [11], regres-
sion analysis [12], signal and image processing [13]. The
proposed spline based VP layer facilitates the incorpora-
tion of expert knowledge from these fields into trainable
frameworks.

4. Cascaded VP residual auto encoders

4.1. VP as auto encoder

Auto encoders (AEs) are neural network topologies that
consist of two main components: encoder part which per-
forms non-linear mapping of input data y into a compact
representation called latent space; decoder part which re-
constructs the original input by projecting the latent space
back to the input space. The objective is then to minimize
the reconstruction error in an unsupervised manner. AEs
are non-linear systems due to semi-linear or non-linear be-
havior of neurons’ activation functions.

As described in section 2, a VP layer in regression mode
estimates the input signal y by first mapping it to coeffi-
cient space c(θ) and then back projection of coefficients
using Φ(θ) to obtain ỹ(θ). The two subsequent projec-
tion steps of a VP regressor are analogous to the encoder
and decoder components of a conventional AE architec-
ture. In fact, c(θ) represents the latent space of the input



data obtained by Φ+(θ). When using spline functions in a
VP layer, the projection consists of linear combination of
piecewise polynomial functions. Moreover, higher-degree
B-spline functions increase the curvature of the VP regres-
sor. Thus, similar to AEs, a VP layer in regression mode is
also a non-linear system.

4.2. Cascaded spline projection residual
auto encoders

When dealing with a high dimensional data, shallow
AEs have a limited ability to represent the input data into a
low-dimensional and meaningful latent space. Moreover,
their construction accuracy drops by increasing the com-
pression ratio between input and latent spaces. One strat-
egy to address such limitations is to increase the depth of
AE by introducing new hidden-layers into the architecture.
Alternatively, several shallow AEs can be stacked together
to enhance the performance of a shallow AE. Cascaded
auto encoders (CAEs) are constructed by layering multi-
ple AEs at top of one another. In such an architecture,
each AE aims at reconstruction of the previous AE out-
put. Compared to the deeper counterpart, cascaded AEs
are computationally less complex and more suitable for ap-
plications where computational resources are constrained.
By adding residual connections between the input nodes in
CAE, each AE layer can learn to reconstruct the residual of
the previous AE layer. In residual CAEs, each AE learns
a partial representation of input data associated to certain
features and characteristics.

The cascaded spline projection residual AEs model is
constructed by deploying B-spline VP layers in regression
mode as AE layers in the residual CAE framework. Figure
1 illustrates the topology of the proposed architecture.

4.3. ECG decomposition

The objective of signal decomposition is to disentangle
each signal into its constituent components. Each com-
ponent represents a specific set of intrinsic features of the
signal such as temporal dynamics and underlying patterns.
Thus, in the presence of complex and non-stationary sig-
nals, it is easier to characterize each signal by analysing its
components. Based on the proposed cascaded spline pro-
jection residual AEs architecture, we develop a new signal
decomposition technique capable of breaking down signal
segments into set of empirically derived components. Let
us assume a residual CAE model with (L ≥ 1) B-spline
VP regressors, the transfer function of the network can be
written as:

f(y) ≈ ỹ :=

L∑
l=1

ỹ(θl), (9)

where ỹ ∈ Rn is the reconstruction of the input signal
y ∈ Rn, and ỹ(θl) is the output of the lth B-spline VP re-
gressor calculated according to Eq. (2). For set of P signal
segments with length of N samples, {θl}Ll=1 parameters
of the model are optimized to minimize the average recon-
struction error:

argmin
{θl∈Rq}L

l=1

1

P

P∑
i=1

∥∥∥y(i) − f(y(i))
∥∥∥2
2
. (10)

To ensure that each B-spline VP layer distinctly captures
the time and frequency information of the input signal
compared to the other layers, we intentionally configure
them with splines functions having different degrees of
smoothness denoted as ℓ in Eq. (3).

5. Experiments

The publicly accessible MIT-BIH Malignant Ventricular
Ectopy Database (VFDB) [14] is used in our experiments.
This database includes 22 two-channel ECG recordings
from subjects who experienced episodes of sustained VT,
VFL, and ventricular fibrillation (VFIB). Each ECG record
is with duration of half an hour and was digitized with 12-
bit resolution and at sampling frequency of 250 Hz. VFDB
contain 15 different rhythms annotations, including VFL,
VFIB, normal sinus rhythm, atrial fibrillation, and other
rhythms. In total, VFDB contains 60 episodes of VFL and
89 episodes of VT. In this study, we only use lead II of
each ECG record.

A cascaded spline projection residual AE is constructed
using five B-spline VP regressors that are initialized with
only a small number of coefficients to permit localization
of basis functions. Additionally, we arrange the B-splines
VP regressors with varying degrees of smoothness, i.e. or-
der, in the ascending range of ℓ = 6, . . . , 2. Thus, each
ECG segment is first passed through the highest order B-
spline VP regressor. We note that higher order B-spline VP
regressors have a higher chance to fit high frequency com-
ponents of input signal. Single-channel ECG signals from
VFDB dataset are first split into two-second segments, and
then rhythm annotations are propagated accordingly. All
segments marked as noise are then discarded. In one-class
novelty detection manner, the topology is trained on all
segments except VT and VFL ones. The average nor-
malized percent root mean squared difference (PRD) of
3.68% and 4.21% were obtained on training and test sets,
respectively. By training a linear one-class Support Vec-
tor Machine (SVM) classifier on the resulting PRD values,
VT/VFL segments are identified with an average accuracy
of 82.6%. Additionally, by training the SVM classifier on
coefficients of the B-spline VP regressors, a sensitivity rate
of 92% and a false positive rate of 9.5% were obtained.
Figure 2 show a decomposition example of a two-second



B-spline VPNN regressor B-spline VPNN regressor

Figure 1. A cascaded spline projection residual AEs
model with two B-pline VPNN regressors.

Figure 2. Decomposition and reconstruction of a 2 second
ECG segment with ventricular ectopic activity, (MSE is
roughly 0.008).

long ECG signal segment from VFDB dataset obtained us-
ing the cascaded spline projection residual AE model.

6. Conclusions

In this paper we presented a novel signal decomposition
framework which is trainable and can adapt itself accord-
ing to underlying patterns of the input. The framework
can be used for feature extraction or compression of sig-
nals. Due to the compact topology of VPNN regressors,
the framework is composed of a small set of parameters,
making it a suitable choice for edge computing and wear-
able devices. The principal used for decomposing signals
into set of non-orthogonal components is generic and the
framework is applicable to any composite signal. In future
works, orthogonality of components should be assured in
order to obtain a more compact and discriminatory repre-
sentation of signals.

7. Code Availability

The data and code of this study are openly available at:
https://github.com/KavehSam/CBSPRAE

Acknowledgements

This project was supported by the János Bolyai Re-
search Scholarship of the Hungarian Academy of Sciences.

References

[1] Pal S, Mitra M. Empirical mode decomposition based ecg
enhancement and qrs detection. Computers in biology and
medicine 2012;42(1):83–92.

[2] Martı́nez JP, Almeida R, Olmos S, Rocha AP, Laguna P.
A wavelet-based ecg delineator: evaluation on standard
databases. IEEE Transactions on biomedical engineering
2004;51(4):570–581.
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