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Abstract

Slowed adaptation of the QT interval to sudden abrupt
heart rate (HR) changes has been identified as a marker of
ventricular arrhythmic risk. However, abrupt HR changes
are difficult to induce in patients. Quantifying the QT
adaptation time in gradual HR changes, as observed in
ECGs recording during an exercise stress test, has been
recently proposed. The time lag between the QT series
and an instantaneous memoryless HR-dependent QT se-
ries along stress test was computed as QT memory. Here,
this method was evaluated in a control scenario using sim-
ulated exercise stress test ECG signals presenting different
OT adaptation times. The method robustness was studied
by contaminating the ECGs with muscular noise (MN) sig-
nals with different Signal-to-Noise ratio (SNR) values, ei-
ther synthetic or extracted from real recordings. We found
that delineation of the T-wave end point in the first trans-
formed lead from Periodic Component Analysis offers the
best performance for low SNR. Moreover, we confirmed
that the estimator provides an unbiased estimate of the QT
memory introduced in the simulations for the studied range
of SNR values (25 to 50 dB).

1. Introduction

Increased spatio-temporal heterogeneity in ventricular
repolarization is related to cardiac instabilities that could
lead to ventricular arrhythmias and sudden cardiac death
(SCD) [1]. The adaptation time of the QT interval to
sudden changes in heart rate (HR) has been identified as
a marker for arrhythmic risk [2]. However, abrupt HR
changes are not always easily observed in Holter record-
ings. Therefore, we proposed to estimate the QT mem-
ory as the lag between the QT series and an instantaneous
memoryless HR-dependent QT series from gradual HR
changes, as those that can be observed during an exercise
stress test (EST) following a ramp-like shape. The delay
was evaluated independently in the exercise and in the re-

covery periods and showed values of QT adaptation dy-
namics in the same ranges as those computed following
abrupt HR changes [3]. However, the robustness and pre-
cision of the algorithm can not be evaluated from real data
where the “truth” is not available.

In this study, we generated simulated ECGs whose RR
dynamics come from real data recorded during an EST [4].
The RR-QT relationship included a non-linear part and the
QT memory part in which the QT adaptation time was an
input parameter. ECGs were contaminated with either syn-
thetic or real muscular noise (MN) signals with selected
Signal-to-Noise Ratio (SNR) values. The study aims were:
(1) to evaluate the T-wave end point (7) delineation by dif-
ferent spatial lead transformation aiming to emphasize the
T-wave; and (2) to study the robustness and precision of
the QT adaptation time estimator by computing the delay
between the QT series and an instantaneous memoryless
HR-dependent QT series in ECGs with different SNR.

2. Methods

2.1. Dataset

Simulated ECGs with different QT adaptation times (7)
were computed with a predefined RR series pattern from
an EST, but modified so that the stress peak was kept in the
same RR value for 10 minutes to facilitate convergence to
a stationary QT-RR relation before recovery started. Ten
ECGs were produced for each selected 7, taken from 10
to 50 s, in steps of 10 s, resulting in a total of 50 clean
simulated ECGs, containing the 8-standard leads V1-V6, I
and II, with a sampling frequency of 1000 Hz. An evolved
version [4] of the simulator in [5] was used to generate
these signals. The simulator’s user-defined parameters are
given in Table 1. Synthetic or real MN signal with differ-
ent Signal-to-Noise Ratio (SNR) was added to the clean
simulated ECGs.

Zero-mean synthetic MN signals were created by the
model defined in [4], which is constant in resting periods



Table 1: User-defined parameters in the ECG simulator.

Parameter User value
Basal onset 10
Exercise ramp *
Period duration (min) Peak 10
Recovery ramp *
Basal end 10
Basal onset 80
HR (bpm) Peak 165
Basal end 95
Basal onset 0.25
Respiratory frequency (Hz) Peak 0.7
Basal end 0.3

*Duration of both exercise and recovery ramps were defined using length
and peak position information of 10 available real noise signals extracted
from signals recording during an EST [6].

and linearly increased in the exercise stage or decreased
in the recovery stage. The MN noise variance at the exer-
cise peak was selected to be four times the variance at the
beginning (basal onset) and was selected according to the
desired SNR:

A
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where Agrs,; is the peak-to-peak amplitude of the
ensemble-averaged QRS of lead [ (determined in a 100-
ms interval centered around R-peak, ngrs,;, of the k-th
beat) [6,7]. The entire MN signal was rescaled so that its
RMS value in a window of 60 s at the exercise peak was
RMSnoise,l-

Real MN signals were extracted from recordings during
EST [6] using a bandpass filter whose lower and upper cut-
off frequencies are 10 and 200 Hz, respectively. To scale
real MN signals to a desired SNR, a factor was calculated
using the RMS information of the 60 s around the exercise
peak of real MN signal and the RMS,ise,; value from eq
(1). Independent MN signals were added to each of the
leads, both for synthetic and real MN signals.

The SNR values defined, for both types of MN, were 25,
30, 35, 40, and 50 dB. Thus, the dataset was composed of
500 ECGs contaminated with noise.

2.2. T-wave end delineation performance

We assessed the accuracy of delineating the T-wave end,
T., using a multi-lead (MLead) delineation strategy as well
as by delineating the first-transformed lead obtained with
different Lead Space Reduction (LSR) techniques.

ECGs were filtered before delineation. First, high-
frequency noise and artifacts were attenuated by using a
6t"-order Butterworth low-pass filter, with a cut-off fre-
quency of 50 Hz, implemented in a forward-backward ver-
sion. Afterwards, baseline wander was attenuated using
cubic spline interpolation.

Different methods based on two LSR techniques, Peri-
odic Component Analysis (mCA)[8] and Principal Compo-
nent Analysis (PCA) [9] were proposed to obtain a trans-
formed lead where T-waves were emphasized. Subse-
quently, the lead was delineated [10] to compute 7¢ [11].
The different versions of the methods based on the two
mentioned LSR techniques are:

wCA: or GrCA, The transformation was learned in each
signal window of 150 seconds, recalculating the transform
W matrix in each window, for beat periodicity P = 1.
GmCA3: The transformation was learned in each window
of 150 seconds recalculating ¥ matrix, with P = 3.
mCA,: GmCA ,, where the ¥ matrix was estimated once
using the first 150 seconds at the onset of the signal and
P = 1, and then the same transformation ¥ was applied
to the rest of the signal.

GnCA3,: The ¥ matrix was estimated once using the
information at the signal onset, in the first 150 seconds,
and then applied to the complete signal, with P = 3.
PCA: PCA technique where transform ¥ matrix was re-
estimated in each window of 150 seconds.

PCA,: PCA technique where ¥ matrix was estimated
once at the signal onset, using the information of the first
150 seconds, and then applied to the complete signal.

Delineation marks of each k-th beat of the simulated
ECGs contaminated with MN with an SNR = 50dB, T’ er s
were used as reference values to study delineation perfor-
mance at higher noise levels. The delineation error, €, was

calculated as:

1 & 2
¢ = (K S (17— T ) 2)

k=1

where K is the number of beats whose T, is defined.

2.3. Performance of QT adaptation time es-
timator

The time lag between the QT series dor(n) and an in-
stantaneous memoryless HR-dependent QT series déT(n)
reflects the QT adaptation time when HR gradually
changes following a ramp-like shape. The déT(n) series
was obtained by a hyperbolic regression model accounting
for its dependency with RR series dgrg(n)[3], so both RR
and QT series were needed to evaluate the delay.

Both the R-wave and QRS onset (QRS,) points were
obtained by delineating each lead [10] and subsequently a
multi-lead strategy was applied to assign a unique mark to
a beat. To compute T, the first transformed lead of the
GnCAg3,, was delineated [3].

The time lag between dg;(n) and dgr(n) was estimated
in the exercise ramp, 7., and in the recovery ramp, 7;., sep-



arately, using a least squares estimator: [3].

%:arngin Z (dr(n) — dQT(n+7))2; Te{-I,..,1},

n=n,

3
with I representing the plausible range of values for 7, and
n, and n. the onset and end of the ramps, respectively.

In a previous study [3], an automatic algorithm was de-
veloped to determine n, and n. based on the the sum of
(3). The onset of the exercise area was defined as the inter-
cept between the flat basal area before the exercise and the
linear decreasing daT(n) ramp at exercise. The same idea
was employed to define the end of the recovery area using
now the recovery and the basal area after it. Both the end of
the exercise and the onset of the recovery were established
at 55% of the total ramp dfﬂ (n) excursion, implying being
away from the exercise peak, see [3].

3. Results and Discussion

Fig. 1 shows the mean and standard deviations of the
delineation errors, ¢, for each delineation method, SNR
value, and noise type. It can be observed from Fig.1a that
the lower the SNR, the better any mCA technique perfor-
mances. When the ECGs were contaminated with syn-
thetic MN, GnCAs3 , reached 5.97 £ 3.32,3.71 £ 2.09,
2.67 £ 1.79 and 1.85 = 1.00 ms for SNR = 25, 30, 35 and
40 dB, respectively. PCA methods showed the lowest er-
ror when the SNR was high, although this error was not far
away from the error obtained with any of the 7CA meth-
ods (6.35+3.78,3.56 +2.07,2.00+0.98 and 1.19+ 1.00
ms for SNR = 25, 30, 35 and 40 dB, respectively, with
PCA,). The Mlead strategy exhibited the worst delineation
performance except for 25 dB (6.09 & 2.26,4.74 £ 1.70,
3.67 = 1.39 and 2.89 £ 1.42 ms for SNR = 25, 30, 35,
and 40 dB, respectively). A less clear tendency was ob-
served in e when ECGs were contaminated with real MN.
The lower the SNR, the better the performance of TCA.
In cases with SNR values lower than 25 dB, mCA outper-
formed the other delineation strategies for real noise and
GnCAj3 , for synthetic noise. These results are in agree-
ment with our previous study [11] where the beat-to-beat
variability over the real QT series was used as a surrogate
of T, delineation performance. When the SNR was equal
to 25 dB, the algorithm was not able to delineate 33% of
the T-wave end points using the Mlead strategy, while the
algorithm was able to delineate around 99% of the T-wave
end points using LSR methods. Since we found 7, delin-
eation critical when the SNR value was lower than 25 dB,
the first transformed lead obtained with GmCAj3 , method
was selected to compute the 7, delineation based on the
above described results.

The mean and standard deviation of the estimated de-
lays in exercise, 7., and in recovery, 7;., were computed for
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Figure 1: Mean and standard deviation of the delineation
error, €, for each delineation method, SNR and noise type.

ECGs with different QT adaptation times, SNR values and
noise types, and are presented in Fig 2. We can observe
similar results when 7, was calculated from ECGs con-
taminated with synthetic or real MN. The mean estimated
adaptation values were slightly biased, with the estimated
times being higher than the simulated ones. In the recov-
ery, we observed a lower influence of the SNR value when
the QT adaptation time was shorter. Moreover, 7, values
were biased, but in this case the estimated times were lower
than the simulated ones. The bias did not exceed 20% in
any case. In general, the standard deviation was higher for
lower SNR.

4. Conclusions

A study on simulated-exercise-stress-test ECGs with a
predefined QT-RR relationship and well-defined muscular
noise levels was performed. We confirmed that the lower
the SNR, the more advantage can be taken from mCA-
based methods for T-wave end delineation. Besides, our
study confirms that the estimated time lag between the QT
series and an instantaneous memoryless HR-dependent QT
series is minimally biased with respect to the underlying
QT adaption time imposed in the simulated ECGs, with
this holding true for the simulated range of SNR values
(25 to 50 dB).
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Figure 2: Mean and standard deviation of the estimated delays in exercise, 7., and in recovery, 7,., computed for ECGs with

different QT adaptation times, SNR values and noise types.
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