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Abstract

As part of the George B. Moody PhysioNet Challenge
2023, our team (am vision) presents a novel approach
to prognosticate the outcomes of postanoxic comatose
patients based on frequency domain and time domain
features by using electroencephalogram (EEG) record-
ings. Frequency domain features include spectral entropy,
power distribution, and dominant frequency. In the Time
domain, zero crossing rate, energy, and entropy were cal-
culated. We also utilized demographic information: Age,
Sex, Return of Spontaneous Circulation (ROSC), Out-of-
Hospital Cardiac Arrest (OHCA), Shockable Rhythm, and
Targeted Temperature Management (TTM) to train XG-
Boost regressor and classifier to predict both the Cere-
bral Performance Category (CPC) score and the Outcome
respectively. Our proposed method received a challenge
score of 0.485 (ranked 18th out of 36), an outcome accu-
racy of 0.81 (ranked 4th out of 36), and an outcome F-
measure of 0.769 (ranked 5th out of 36) on the test set.

1. Introduction

Comatose following cardiac arrest present a complex
and multifaceted clinical challenge. The assessment of
their prognosis is crucial for making informed medical de-
cisions regarding life-sustaining therapies. Traditionally,
clinicians have relied on various clinical and neurophysi-
ological markers, including somatosensory-evoked poten-
tials (SSEPs), pupillary reflexes, corneal reflexes, motor
responses to pain, and serum neuron-specific enolase [1].
However, recent studies have underscored the potential of
early EEG as a reliable prognostic tool [2, 3].

Early EEG recordings have revealed intriguing time-
dependent patterns associated with patient outcomes. For
instance, continuous EEG patterns observed at the 12-
hour mark have shown strong associations with favorable
patient outcomes, while the presence of isoelectric pat-

terns at 24 hours has been linked to less favorable results.
Additionally, specific frequency-dependent patterns have
been identified, such as dominant frequency. Notably, the
presence of Burst Suppressions, characterized by identical
bursts, have consistently shown a robust correlation with
poor patient outcomes, irrespective of the timing of assess-
ment [2]. Despite the promise of early EEG, the dynamic
and variable nature of EEG recordings presents challenges
in interpretation, often necessitating expert analysis. Fur-
thermore, the shortage of neurologists available for such
critical tasks underscores the need for advanced algorithms
capable of automated analysis and prognostication.

The George B. Moody PhysioNet Challenge 2023 pro-
vided a unique platform for teams to develop open-source
algorithms capable of leveraging fundamental clinical in-
formation, along with EEG and ECG recordings. The pri-
mary objective was to predict the extent of neurological re-
covery in patients who have experienced cardiac arrest and
remain in a comatose state [4, 5]. This challenge granted
participants access to a comprehensive dataset comprising
EEG data and neurological outcomes from comatose pa-
tients, generously made available by the International Car-
diac Arrest REsearch consortium (I-CARE) [6].

Recent literature have demonstrated the superiority of
Deep Learning (DL), particularly convolutional neural net-
works, over traditional models like Logistic Regression
and Random Forest in using EEG for various clinical chal-
lenges [7, 8]. However, efforts are made in other research
fields to use Tree-Based Machine Learning (ML) models
that yield classification results comparable to DL methods
combined with better clinical interpretability [9].

In this paper, we detail our approach to assessing the
prognosis of postanoxic comatose patients by utilizing
EEG data. First, An artifact detection pipeline was adopted
to identify certain artifacts. Our teams earlier successes
in capturing spectral and temporal features of EEG and
other bio-medical signals [10,11] paved a way to combine
time and frequency domain features and apply ML tech-



niques, such as an XGBoost classifier for predicting pa-
tient outcomes and an XGBoost regressor to estimate the
CPC score.

2. Methods

This proposed methodology includes three main phases:
EEG preprocessing, feature extraction, and model training
as shown in Figure 1.

2.1. Preprocessing

Given the substantial volume of EEG data, We reorga-
nized it ensuring consistent channel names across all pa-
tient records. To mitigate power line interference, we ap-
plied a notch filter at 60Hz. Furthermore, we implemented
a bandpass filter (0.1Hz - 30Hz) to retain relevant signal
frequencies. In instances where EEG signals had a sam-
pling rate of 256Hz, we used poly-phase filtering tech-
nique, resampling them to 128Hz. Signals with a sampling
rate of 250Hz were resampled to 125Hz. We identified 19
common channels across all patients (Fp1, F7, T3, T5, O1,
Fp2, F8, T4, T6, O2, F3, C3, P3, F4, C4, P4, Fz, Cz, Pz).
However, 2 channels Fpz and F9 were inconsistent and we
excluded them. Subsequently, we transformed the 19 indi-
vidual channels into 18 bipolar channels (Fp1-F7, F7-T3,
T3-T5, T5-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F3,
F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fz-
Cz, Cz-Pz). This decision was underpinned by the advan-
tages of a bipolar montage, which exhibits high sensitivity
to physiological changes, making it well-suited for various
clinical applications, including diagnostic purposes [12].

Following the initial signal processing techniques, an
artifact detection pipeline was implemented, drawing in-
spiration from a recent literature source that operated on
the same dataset [13]. In this pipeline, the EEG data is
divided into non-overlapping 5-minute segments. Within
each segment, artifacts are identified every 5 seconds based
on three primary criteria: amplitude, signal flatness, and
StairCase-like patterns. Abnormally large amplitudes ex-
ceeding 500µV are flagged. Flat signals, characterized by
a standard deviation of less than 0.2µV for more than 2
seconds within a 4-second window, are also detected. Ad-
ditionally, StairCase-like patterns, often caused by ICU
machines like cooling blankets or pumps, are identified
using EEG spectrograms. This process involves spectral
analysis using multitaper spectral estimation, calculating
the power spectral density (PSD) within a frequency range
of 0.1Hz to 30Hz. The resulting PSD values are converted
to decibels (dB) using a logarithmic scale. Subsequently, a
smoothing operation is applied using a Hanning window,
followed by convolution with specific templates: (-1., -1.,
0, 1., 1., 1., 1.) for detecting increasing staircase-like pat-
terns and (1., 1., 1., 1., 0., -1., -1.) for detecting decreasing

staircase-like patterns. The artifact indicator (0/1) and sig-
nal quality assessment in the referenced study are based on
the number of consecutive 5-second clean epochs. Unlike
that, our research focuses on counting the detected artifacts
for each 5 s, contributing to the overall artifact count. The
best EEG segment with the highest signal quality, deter-
mined by the lowest artifact count is selected for subse-
quent feature extraction. If no clean 5-minute segment is
found or if the signal data is less than 5 minutes, the entire
signal is excluded from further analysis.

2.2. Frequency domain features

Dominant frequency: It refers to the frequency com-
ponent within a signal that has the highest magnitude. The
dominant frequency is determined using the Fast Fourier
Transform (FFT), a mathematical technique that trans-
forms a time-domain signal into frequency domain. The
process begins by computing FFT for the signal, resulting
in a complex-valued spectrum. The next step involves cal-
culating the magnitude of the FFT result. The index cor-
responding to the highest magnitude, indicating the dom-
inant frequency component, is identified. The associated
frequency value is obtained by mapping this index.

Spectral entropy: Spectral entropy provides insights
into the complexity of frequency components present in
the signal. First, the FFT is applied to the EEG signal.
Next, the magnitudes of the resulting complex FFT val-
ues are computed, representing the amplitudes of different
frequency components in the EEG signal. Entropy(1) was
calculated for normalized magnitudes.

Entropy = −
N∑
i=1

p(xi) · log2(p(xi)) (1)

Here xi represents different values in the normalized mag-
nitude spectrum, and p(xi) represents the probability that
a specific value occurs in the spectrum.

Power distribution: The process begins with the appli-
cation of the FFT to the EEG signal. Subsequently, the
squared magnitudes of the complex FFT values are com-
puted, representing the power of each frequency compo-
nent in the EEG signal. To ensure a valid power distri-
bution, the computed power values are normalized by di-
viding each power value by the sum of all power values,
effectively scaling the distribution between 0 and 1. The
power distribution for each EEG channel is then obtained.

Power distribution =
|FFT (signal)|2∑
|FFT (signal)|2

(2)

2.3. Time domain features

Zero Crossing Rate(ZCR): ZCR is a measure of how
often a signal changes its sign within a given frame. This
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Figure 1. Workflow for predicting patient Outcome and CPC score. It involves selecting the most optimal 5-minute
segment from each hour, which is then followed by feature extraction and prediction.

feature provides information about the frequency of rapid
changes in the EEG signal. It quantifies the rate at which
the signal crosses zero. We calculate the number of zero-
crossings and normalize it by dividing it by twice the
length of the signal.

ZCR =
Number of Zero Crossings

2× Signal Length
(3)

Energy: Energy is a fundamental time domain feature
that reflects the magnitude of signal variations. It is calcu-
lated by taking the sum of the squared values of the signal.
We calculate the energy by summing the squares of the
signal values. The formula for Energy is as follows:

Energy =

N∑
i=1

x2
i (4)

Here, xi represents EEG signal values.

Entropy: Entropy is a measure of the randomness or
unpredictability of the signal values. First, we create a his-
togram of the signal values with a specified number of bins
(50 bins). Next, we normalize the histogram and calculate
the Shannon entropy(1). Here, p(xi) is the probability of
each bin value xi in the histogram.

2.4. Model Training

After extracting features, the resulting input feature vec-
tor dimension for each patient amounted to 116. The do-
main features were derived from each of the 18 EEG chan-
nels, resulting in 108 (18 × 6) features, and were com-
plemented by an additional 8 demographic features. The
choice of XGBoost, a tree-based model, was made for both
classification and regression tasks, and further optimiza-
tion of hyperparameters was carried out. Table 1 shows
details regarding the model training parameters.

Parameter Values
max depth 3, 5, 7, 9

learning rate 0.01, 0.1, 0.02
n estimators 200, 250, 300, 350, 400, 450, 500
base score 0.3, 0.4, 0.5, 0.6

Table 1. Hyper parameters used for the XGboost model.

3. Results

The challenge scores of our model are presented in Ta-
ble 2. Further evaluation metrics received on our algorithm
are listed in Table 3. Out of 112 teams that participated in
the challenge, am vision secured a rank of 18th (out of 36
teams that were eligible for rankings) with the challenge
score of 0.485. Additionally, in the categories of Outcome
Accuracy and Outcome F-measure, our team is placed in
4th and 5th positions for the scores of 0.81 and 0.769 re-
spectively, on the hidden test set.

12 h 24 h 48 h 72 h
training 0.356 0.427 0.741 0.838

validation 0.254 0.388 0.463 0.522
test 0.292 0.401 0.446 0.485

rank (out of 36) 13 16 18 18

Table 2. The challenge scores on the training, validation,
and test sets, ranks received at different hours after ROSC.

4. Discussion and Conclusions

In our research, we have introduced an approach that
encompasses feature extraction from both the time and
frequency domains. The model demonstrated good dis-
crimination ability (AUROC) and precision-recall trade-
off (AUPRC) on all sets, indicating its capacity to distin-
guish between poor and good outcomes effectively. The



Outcome AUROC Outcome AUPRC Outcome Accuracy Outcome F-measure CPC MSE CPC MAE
training 0.947 0.969 0.865 0.852 0.466 0.391

validation 0.803 0.88 0.748 0.707 2.579 1.311
test 0.841 0.89 0.81 0.769 2.449 1.282

Table 3. Advanced evaluation metrics for the training, validation, and test sets at 72 hours after ROSC.

accuracy and F-measure values were high on the train-
ing set, indicating correct classifications and a balance be-
tween precision and recall. The drop in challenge scores
on the validation and test sets suggests potential overfit-
ting and challenges in generalization on new data. Notably,
in a previous submission, where only demographic data
was input to the HistGradient Boost model, it achieved a
score of 0.45 on the validation set highlighting the rele-
vance of such information in our modelling. It is important
to acknowledge that, in our current approach, we iden-
tify only three specific artifacts, whereas EEG data com-
monly contains various other artifacts, including muscle
artifacts, ECG artifacts, and more. Due to time limitations
imposed on the algorithm, we couldn’t address all artifacts.
However, we firmly believe that a more comprehensive ap-
proach, encompassing the identification of various artifacts
and training a model based on fundamental features, can
lead to optimal results, potentially surpassing the need for
complex feature extraction techniques.
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