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Abstract

This study aims to investigate the use of cardiopul-
monary coupling (CPC), as biomarker for characterizing
obstructive sleep apnea (OSA) severity in children. CPC
analysis is based on the time-frequency coherence (TFC)
between the respiratory effort signal and heart rate vari-
ability. We analyzed 255 children with no, mild, mod-
erate, and severe OSA during wake, rapid eye move-
ment (REM) sleep, and non-REM (NREM) sleep. Re-
sults showed that the TFC in the low-frequency (LF) band
increased significantly with the severity of OSA in both
NREM (p<0.001) and REM sleep (p<0.001). Conversely,
the TFC in the HF band, the parameter estimating CPC, is
significantly lower for increasing OSA severity categories
during NREM (p=0.02) and REM (p=0.03). The findings
suggest that TFC could be a useful biomarker for assess-
ing OSA severity in children, and could provide additional
information about underlying pathological mechanisms.

1. Introduction

Obstructive sleep apnea (OSA) is a common sleep dis-
order characterized by repetitive episodes of upper airway
obstruction during sleep. The gold standard for the diag-
nosis of OSA is overnight polysomnography (PSG), which
measures various physiological signals, including elec-
troencephalography, electrocardiography (ECG), respira-
tion, and oxygen saturation (SpO2). However, the diag-
nosis of OSA is time-consuming, expensive, and requires
specialized equipment and trained personnel. Hence, there
is a need for alternative tools that are more convenient and
readily accessible, aiming to alleviate the complexities as-
sociated with PSG.

Cardiopulmonary coupling (CPC) is a physiological
phenomenon that reflects the interaction between the car-
diac and respiratory regulation. By analyzing heart rate
variability (HRV) and respiration signals, both routinely
recorded during polysomnography (PSG), CPC can be as-
sessed. The Respiratory Sinus Arrhythmia (RSA) is the
main expression of CPC, which is the heart’s accelera-
tion and deceleration in response to inspiration and expira-
tion, respectively. RSA enhances pulmonary gas exchange
and facilitates cardiac efficiency by synchronizing perfu-
sion and ventilation during the respiratory cycle. Stud-
ies suggest that CPC can serve as an effective ambulatory
biomarker for sleep quality [1,2], and CPC based on time-
frequency coherence (TFC) also shows potential for pre-
dicting extubation readiness in intensive care units [3].

Although some studies have explored the potential of
CPC analysis for sleep apnea, the research in this area re-
mains limited. Previous studies found decreased CPC in
adults with OSA compared to healthy controls, suggesting
that it may be a useful tool for the diagnosis and moni-
toring of this condition. They also found a preponderance
of power in the low-frequency (LF) band in adults with
OSA, which may be associated with abnormal behaviors
during sleep-disordered breathing, such as periodic breath-
ing, while high CPC values in the high-frequency (HF)
band are associated with healthy respiratory sinus arrhyth-
mia and deep sleep [1, 4]. Other studies have shown that
aging may lead to a reduced autonomic modulation during
wake, S2, and REM sleep in older adults with OSA, when
compared to younger individuals [5].

In this study, we aim to characterize CPC in children
with OSA and explore its potential as a diagnostic tool
for this condition in pediatric patients. We have the hy-
pothesis that increasing OSA severity is also related with
decreased CPC and the observed unbalanced Autonomic



Nervous System (ANS) regulation in adults. Stable sleep
as estimated by CPC in the HF band would show reduc-
tions in pediatric patients with OSA, compared to patients
who recovered from OSA.

2. Materials and Methods

2.1. Sleep Data

The Childhood Adenotonsillectomy Trial (CHAT) was a
prospective randomized trial designed to evaluate the effi-
cacy of various treatments for OSA [6]. All patients under-
went a follow-up nocturnal PSG at a clinical laboratory to
evaluate the current OSA status, seven months after treat-
ment. Our study included 255 pediatric patients at follow-
up, between the ages of 5-10 years. OSA severity was es-
tablished using the apnea-hypopnea index (AHI) accord-
ing to established guidelines [6], with severity categories
ranging from no OSA (N=63) to mild (N=135), moderate
(N=30), and severe OSA (N=27). We collected data from
the PSG recordings, including the ECG, thoracic and ab-
dominal respiratory signals, and sleep stage information,
identified and labeled in 30-second epochs by trained sleep
specialists.

2.2. Signal Preprocessing

First, the signal from the abodominal respiratory effort
band, r(t), is used to obtain the frequency signal, Fr(t),
which is derived using a peak-conditioned spectral aver-
aging method [7]. After, the ECG signal is upsampled at
1000 Hz with cubic spline interpolation and the R-waves
are detected by means of a wavelet-based method. In order
to explain the cardiac regulation by the ANS, the HRV sig-
nal is estimated with the Time-Varying Integral Pulse Fre-
quency Modulation model. Essentially, given a particular
series of heatbeats after ectopic correction, the instanta-
neous HR can be expressed as dHR(t) = (1+m(t))/T (t).
The term m(t) represents the modulating signal, which is
assumed to contain the ANS modulation, and the instanta-
neous mean-HR, is obtained by low-pass filtering dHR(n)
at 0.03 Hz. The evenly-sampled versions are obtained by
resampling at 4Hz. For the interested reader, methods are
extensively described in [3].

Since respiration affects HRV through changes in the
respiratory frequency and the respiratory pattern, the anal-
ysis of HRV is guided by respiration. Therefore, the HF
band is set to be at the respiratory frequency, Fr(t), and
time-varying: ΩHFc(t) = [Fr(t) − 0.125, Fr(t) + 0.125]
Hz. This is motivated since the average breathing rate in
children is non-stationary, and usually above 24 breaths per
minute (0.4Hz), which lies within the limits of the classic
HF band, which was established for adults. The LF band
is defined using the classic limits: ΩLF = [0.04, 0.15] Hz.

2.3. Time-Frequency Coherence

The influence of respiration on HRV, i.e., CPC, can be
captured using spectral coherence [8]:

γ̂(t, f) =

∣∣∣Ŝr,m(t, f)
∣∣∣√

Ŝr(t, f)Ŝm(t, f)
, (1)

where γ̂(t, f) ∈ [0, 1]. Ŝr(t, f) and Ŝm(t, f) are the time-
varying auto-power spectral densities calculated by means
of the Cohen’s Class Wigner Ville Distribution of respira-
tion and HRV, r(t) and m(t), respectively, and Ŝr,m(t, f)
is the cross-power spectral density. A time and frequency
resolution of 11.25 s and 0.039 Hz is chosen [8], respec-
tively. Figure 1 provides an illustrative example of the
time-frequency spectral coherence.

A significant coherence level between HRV and res-
piration must be established by a threshold, namely
γTH(t, f ;α). This significant coherence threshold is es-
tablished based on a surrogate data analysis, with α = 1%
risk that two signals are coupled when real coupling does
not exist γTH(t, f ; 0.01) = γ0. To obtain γ0, the spec-
tral coherence, γ̂(t, f), of two 5-min length, white gaus-
sian noise signals is calculated. This is repeated iteratively
1000 times, and the 99th percentile of γ̂(t, f) can be set as
threshold of significant spectral coherence, γ0 = 0.8860.
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Figure 1: Time-Frequency Coherence. From respiratory
signal, r(t), and HRV signal, m(t), TF spectra Sr(t, f)
and Sm(t, f) are calculated, respectively. Quadratic spec-
tral coherence γ2(t, f) is finally obtained from the cross-
spectra between respiration and HRV. Significant spectral
coherence, γ̂(t, f) > γ0, is outlined in red.



The CPC biomarker, based on the TFC between HRV
and respiration in the HFc band [3], denoted as C T

HFc,
is composed considering the average spectral coherence
above γ0, namely CHFc, with the percentage of time in sig-
nificant coherence in the epoch, THFc (Fig. 1):

C T
HFc = CHFc · THFc. (2)

For CPC, by definition, C T
HFc should be calculated in the

HFc band, but spectral coherence can be also calculated
in different spectral bands like LF band, with the TFC-LF
reading as C T

LF.

2.4. Statistical analysis

The CPC biomarkers are derived using 5-min epochs.
We conduct a separate analysis of CPC results during the
three sleep stages: wake (W), rapid-eye movement sleep
(REM), and non-REM sleep (NREM). For an epoch to be
considered in the analysis, it must have at least 90% of its
time in the same sleep stage. For each patient, the aver-
age CPC in the epochs at the same sleep stage along the
overnight recordings is calculated.

The TFC features considered do not fit either normal-
ity or homoscedasticity tests, therefore a Kruskal-Wallis
(KW) test is conducted to compare differences in CPC
biomarkers among the four severity groups (no OSA, mild
OSA, moderate OSA, and severe OSA). A p-value < 0.05
for the KW test can be considered for statistical signifi-
cance. Afterwards, a paired signed rank test was employed
to compare the differences in TFC values of each patient
between sleep stages. A p-value < 0.01 is considered for
statistical significance, after correction for multiple com-
parisons.

3. Results and Discussion

Fig. 2 exhibits the boxplots of the TFC in the LF and
HFc bands, comparing the values of the 4 groups of OSA
severity for the three sleep stages. The CPC levels in each
sleep stage, as measured by TFC in the HFc band, are
significantly lower for increasing OSA severity categories
during NREM (KW test, p = 0.02), and REM sleep (KW
test, p = 0.03). On the contrary, the TFC in the LF band
is significantly higher for increasing OSA severity cate-
gories, both during NREM (KW test, p < 0.001), and
REM sleep (KW test, p < 0.001), which is consistent with
results found in adults [1].

Tab. 1 shows the p-values of the signed rank test, com-
paring TFC values for the three sleep stages in the LF and
HFc bands, of the different OSA severity levels. The sta-
tistical analysis shows that differences exist in CPC (TFC-
HF) in all stages, except for the children with severe OSA,
stating the fact that a separate analysis in sleep stages is

necessary for sleep apnea characterization. No significant
differences are found in the LF band in severe OSA pa-
tients comparing TFC values in REM and NREM, whereas
these differences are clear for no and mild OSA patients.
Besides, as hypothesized, the CPC is also significantly
lower during wake compared to NREM and REM in all
OSA categories (Tab. 1b). According to previous research,
processes such as sleep apnea and fibromyalgia, which
lead to sleep fragmentation, have been shown to reduce the
amount of CPC (TFC-HFc) [1]. In addition, higher TFC-
LF values have been associated with a higher prevalence
of hypertension and stroke in adults [9].

In general, the amount of apnea/hypopnea events are
comparable between REM and NREM [10]: approxi-
mately 88% of 10-min epochs in REM sleep had less than
5 events per epoch, and 97% of the epochs in NREM sleep
had less than 5 apnea/hypopnea events per epoch. The ob-
served increased coupling in the LF band in severe OSA
patients could be attributed to the higher prevalence of pe-
riodic breathing during REM sleep, as reported in [1], as
well as to the pronounced cyclic variations in HRV in re-
sponse to repeated apnea episodes. However, values of
CPC in the HFc band where higher in REM sleep com-
pared to NREM, or at least similar for severe OSA patients,
which explains that the significant reduced CPC with in-
creasing severity of OSA may not be due to effects related
to apnea events, but rather due to other physiological fac-
tors like alterations in the sympathetic activity.

Note that it is necessary the use of a significant coher-
ence threshold. Many existing works studying CPC based
on spectral coherence, as biomarker on sleep quality, do
not rely on the fact that two white-noise signals will have
a baseline level of coherence γ0, where zero coherence
should be reported by definition. Our results show that this
methodology might provide additional phenotypic infor-
mation to better classify between sleep stages, since wake
and REM sleep are sometimes indistinguishable [1].

This study has a limitation in that respiratory signals
other than the nasal pressure signal were used. Previous
studies have also used alternative respiratory signals [1,4],
such as ECG-derived respiration (EDR). In fact, Varon et
al. reported that errors in CPC were significantly greater
during apnea events than during normal activity when us-
ing EDR signals as surrogate [11]. Owing to chest move-
ments captured by EDR, it may not be related to actual
respiration during apnea events, causing an overestima-
tion of CPC. We demonstrated the usefulness of CPC us-
ing recordings of respiratory effort bands, but future works
should consider using the nasal pressure cannula signal,
which would lead to a potential reduction in CPC values in
the presence of obstructive respiratory events.
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Figure 2: Boxplots of the TFC in the LF band (left), and in the HFc band (right), comparing the values of the 4 groups
of OSA severity (no, mild, moderate and severe OSA), for the three sleep stages (Wake, NREM and REM). Statistical
significant difference between TFC values of the OSA severity groups is obtained using the Kruskal Wallis (KW) test, for
each sleep stage.

Table 1: P-values obtained from the paired signed rank
test, comparing the TFC values of each patient between
the three sleep stages. The analysis is done in the LF (a),
and HFc bands (b), for the different OSA severity levels.
Statistical significance is considered for p-values <0.01, to
correct for multiple comparisons.

a) TFC (LF) W-NREM W-REM NREM-REM

No OSA ≪0.01 ≪0.01 ≪0.01
Mild OSA 0.03 ≪0.01 ≪0.01

Moderate OSA 0.54 0.09 0.03
Severe OSA 0.004 0.05 0.02

b) TFC (HFc) W-NREM W-REM NREM-REM

No OSA ≪0.01 ≪0.01 ≪0.01
Mild OSA ≪0.01 ≪0.01 ≪0.01

Moderate OSA ≪0.01 ≪0.01 ≪0.01
Severe OSA ≪0.01 ≪0.01 0.04

4. Conclusion

Overall, we can conclude that the TFC in the LF band
could be a useful biomarker for assessing the severity of
OSA, while CPC as measured by TFC in the HF band
could provide additional information about the patholog-
ical mechanisms underlying OSA. However, further stud-
ies with larger sample sizes are needed to confirm these
findings and to investigate the use of respiratory signals in
conjunction with HRV analysis.
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