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Abstract

This work is part of the ’Predicting Neurological Re-
covery from Coma After Cardiac Arrest: The George B.
Moody PhysioNet Challenge 2023’ to investigate the pre-
dictive potential of bipolar electroencephalogram (EEG)
recordings towards efficient prediction of poor neurologi-
cal outcomes. A retrospective design using a hybrid deep
learning approach is utilized to optimize an objective func-
tion aiming for high specificity, i.e., true positive rate
(TPR) with reduced false positives (≤ 0.05). A multi-
channel EEG array of 18 bipolar channel pairs from a
randomly selected 5-minute segment in an hour is kept.
In order to determine the outcome prediction, a combi-
nation of a feature encoder with 1-D convolutional lay-
ers, learnable position encoding, a context network with
attention mechanisms, and finally, a regressor and classi-
fier blocks are used. The feature encoder extricates local
temporal and spatial features, while the following posi-
tion encoding and attention mechanisms attempt to cap-
ture global temporal dependencies. Results: The proposed
framework by our team, OUS IVS, when validated on the
challenge hidden test data, exhibited an unofficial score
(not ranked) of 0.416 at 72 hours after the return of spon-
taneous circulation. The code for this paper is available
on GitHub: https://github.com/HeminQadir/
PhysioNet_OUS_IVS.
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1. Introduction

Assessment of integral neurological outcomes in co-
matose patients after cardiac arrest is an ongoing scien-
tific challenge to the clinical world. The current prognos-
tication methods on comatose patients with the return of
spontaneous circulation primarily rely on subjective visual
expert scoring of physiological signals. However, this ap-
proach is susceptible to inherent subjectivity, leaving a sig-

nificant number of patients categorized as ambiguous with
uncertain prognoses. Multi-channel EEG streams aid in re-
ducing the subjectivity of prognostic evaluation, and sev-
eral prognostic indicators are already been identified based
on the considered outcome (good/poor prognosis) follow-
ing cardiac arrest [1–4]. Burst suppression and nonreac-
tive EEG patterns indicate a poor prognosis, but the inter-
pretable quantification of EEG streams is a laborious task
that demands advanced clinical and neurophysiological ex-
pertise, inhibiting the accessibility of EEG-informed prog-
nostication. Automating EEG interpretation has the poten-
tial to improve accessibility and diagnostic accuracy.

In recent years, deep learning (DL)-based attention
mechanisms have presented an intriguing avenue for fur-
ther exploration of the multi-channel integration of the
brain [5]. The attention mechanisms enable DL models to
focus on relevant information while considering the long-
range relationships among different parts of inter and intra-
channel signals. The attention mechanism has shown re-
markable success in natural language processing to capture
long-range dependencies compared to convolutional neu-
ral networks (CNNs). In this study, we hypothesize that
attention mechanisms can enhance the interpretability and
predictive power of multichannel EEG data to classify co-
matose patients with good or poor neurological outcomes.
Specifically, we propose that attention mechanisms can ef-
fectively discern both self-attention patterns within indi-
vidual EEG channels and cross-attention patterns among
multiple EEG channels, thus providing critical insights
into distinct brain activities underlying the comatose state,
leading to improved classification accuracy.

This paper contributes to the George B. Moody Phys-
ioNet Challenge 2023 (formerly the PhysioNet/Computing
in Cardiology Challenge) [6]. This challenge invited teams
to devise automated methods for predicting neurological
outcomes from coma after cardiac arrest using a vast in-
ternational database comprising > 57, 000 hours of data
collected from 1,020 patients across seven hospitals [7].

https://github.com/HeminQadir/PhysioNet_OUS_IVS
https://github.com/HeminQadir/PhysioNet_OUS_IVS
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Figure 1. The proposed framework: A raw multi-channel EEG data is fed as initial input to the Pre-processing pipeline
where the data is filtered, resampled, rescaled, segmented, and converted to bipolar signals. A pre-processed 5-minute
segment is fed to Feature Encoder which converts each bipolar channel input to a lower-dimensional feature representation
called Tokens preserving local patterns and spatial relationships. The information about the position of each token in the
sequential feature space is encoded by the Positional Encoding block. The Context Network enables the framework to focus
on relevant information while considering the long-range relationships between inter- and intra- channels. The resulting
attention maps are flattened and fed to Classification and Regression blocks for binary classification and CPC prediction.

2. Materials and Methods
2.1. Pre-processing

The data pre-processing pipeline includes the follow-
ing sequence of operations: filtering, re-sampling, re-
scaling, bipolar conversion, and finally, segmentation of
EEG recordings. At the onset, the entire EEG data is fil-
tered using a Butterworth band pass filter with cut-off fre-
quencies of 0.5 Hz and 35 Hz to remove baseline wander
and high-frequency noises from the EEG signals. Next,
the filtered signals are examined in terms of sampling fre-
quency, and all the EEG recordings are re-sampled to 100
Hz to maintain uniformity with respect to sampling fre-
quencies. The re-sampled signals are then re-scaled us-
ing Min-max standardization. Next, re-scaled signals are
converted to bipolar representations and finally segmented
into 5-minute segments. The bipolar conversion, subtract-
ing EEG signals from adjacent scalp electrodes, is cru-
cial in EEG signal processing. It reduces noise and ar-
tifacts, enhances spatial resolution by focusing on local-
ized brain activity, minimizes volume conduction effects,
and aids comparisons to baseline states. Valuable in clin-
ical and neuroscience research, it provides a cleaner and
more accurate brain activity representation. This data pre-
processing pipeline yields a set of 5-minute segments of 18
bipolar channels from every hour of EEG recordings.

2.2. Framework
Figure 1 depicts the proposed framework’s design, with

further sections explaining each block in detail.

2.2.1. Feature Encoder
In this study, we employ a systematic approach to handle

the pre-processed 5-minute segments of 18 bipolar EEG
channels. Each bipolar channel segment is passed through
its own dedicated feature encoder block, resulting in a to-
tal of 18 such blocks. Each feature encoder block consists
of a stack of seven 1D CNN layers, as illustrated in Fig-
ure 2. The initial layer includes an instance normalization
between the 1D convolution and the Gaussian Error Lin-
ear Unit (GELU) activation function. The other six layers
consist of a 1D convolution followed by a GELU activa-
tion function. The total context of the encoder receptive
field at 7th layer is 2970 samples with a jump of 2430,
corresponding to ∼30 seconds at the 100 Hz sample rate.
Hence, the feature encoder blocks converted ∼30-second
fragment to a token. As a result, 12 tokens are generated
from each bipolar channel from a 5-minute segment. The
output of the feature encoder yields a feature vector with
dimensions 12 × 768 per bipolar channel and a total fea-
ture space dimension of 216× 768 from the multi-channel
EEG array of 18 bipolar channels. This stack of seven 1D
CNN layers excels at capturing local patterns and depen-
dencies within the EEG channels with respect to time, ef-
fectively reducing the data dimensionality while preserv-
ing relevant information. This feature extraction process
transforms raw EEG signals into compact representations
in the form of tokens that the context network can further
process. Tokenization allows the EEG data to be organized
into discrete fragments, enabling the attention mechanism
to model long-range dependencies and capture complex re-
lationships within inter- and intra- EEG channels.
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Figure 2. Architecture of the Feature Encoder.

2.2.2. Positional Encoding
Positional encoding adds encoding vectors to the token

embeddings, i.e., it encodes information about the posi-
tion of each token. The significance of positional encod-
ing lies in enabling an attention mechanism (see subsec-
tion 2.2.3) to handle sequences of variable length while
preserving their order. In the proposed framework, the po-
sitional encoding block passes the resultant feature space
through learnable positional vectors, which are learned
and then appended as addresses to encode the positions
of the tokens relative to one another during the training
phase. We use a learnable positional encoding scheme over
other approaches because it offers flexibility in modeling
complex position-dependent relationships, where the pat-
terns in data might not conform to simple sinusoidal func-
tions, and hence, there is a need to capture more nuanced
position-based information. Further, if the input sequences
have varying lengths, learnable positional encodings can
adapt to these variations, ensuring that positional informa-
tion remains meaningful regardless of sequence length. It
is worth mentioning that we prepend learnable [class] and
[regress] tokens to the resulting feature space (see Figure
1), leading to the dimension of 218× 768. The state value
of these two tokens serves as the class and regression rep-
resentations in the feature space.

2.2.3. Context Network
As shown in Figure 3, the context network of the at-

tention mechanism comprises K attention blocks in suc-
cession. Each attention block applies multi-head atten-
tion with M heads and a subsequent feed-forward net-
work, both followed by layer normalization. The feature
encoder uses convolutional filters with limited receptive
fields, with 2970 samples designated for the last layer. This
yields the feature encoder suitable for capturing local pat-
terns and short-term dependencies. However, EEG multi-
channel data analysis can benefit from global patterns and
long-range dependencies across various time steps. We ad-

dress this by proposing a hybrid architecture combining 1D
CNNs and attention mechanisms. This hybrid approach
aids in modeling and extracting features from EEG data
with both short-term and long-term dependencies. Using
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Figure 3. Context Network for Attention Mechanism.

our context network, we aim to capture hierarchical tem-
poral dependencies by combining short-term patterns cap-
tured by the feature encoder to form longer-term patterns.
Such a design seeks to model the interaction between pat-
terns at different time scales. The resulting feature space
contains tokens created from 18 bipolar EEG channels.
This token fusion approach facilitates the context network
to model long-range dependencies and capture complex re-
lationships within inter- and intra-EEG channels simulta-
neously without adding complexity to the model design.

2.2.4. Classification and Regression
The context network is followed by two blocks: the clas-

sification and regression blocks. Both these blocks con-
sist of a single layer of fully connected neurons. Once the
attention maps are obtained, they will be flattened into a
vector that these two blocks can handle. The classification
block attempts to forecast the neurological outcome, which
is a binary decision: “0” for a good outcome or “1” for a
poor outcome. In contrast, the regression block aims to
predict the Cerebral Performance Category (CPC) value,
which is an ordinal scale ranging from 1 to 5 [7].

2.3. Training Details
Attention mechanisms typically require a substantial

amount of training data to capture inherent correlations.
This is accomplished by adapting a segmentation approach
for the selected hour of EEG recording into 5-minute seg-
ments. To further enhance training robustness, each it-
eration is started by randomly selecting an hour of EEG
recording of a patient, followed by a segmentation strat-
egy, and then selecting a random 5-minute segment from
the corresponding random hour. Using this random selec-
tion and 5-minute segmentation techniques, we could gen-
erate ∼0.5 million training samples from EEG recordings
of 607 patients (See Section 3).

We performed a patient-stratified data split on a given
training dataset, resulting in two in-house subsets: an 80%
training set and a 20% validation set. The validation set



Table 1. Assessment of our framework along with the challenge score (true positive rate at false positive rate of 0.05)

Time Challenge Score Performance Metrics on Test
(Hours) Train Valid Test AUROC AUPRC ACC F-Measure CPC MSE CPC MAE

12 0.165 0.119 0.149 0.628 0.746 0.703 0.537 3.267 1.692
24 0.325 0.284 0.371 0.758 0.838 0.775 0.724 3.424 1.599
48 0.421 0.507 0.545 0.826 0.902 0.761 0.728 3.671 1.579
72 0.424 0.537 0.416 0.794 0.880 0.761 0.727 3.779 1.602

served as a means for frequently assessing the trained
model’s performance, and the best model, determined by
the highest accuracy, was retained. Adam optimizer is ap-
plied to update the model’s weights with a batch size of
10 and a learning rate of 0.0001 with 40,000 epochs. For
the classification task, we adapted the cross-entropy loss
function, tailored to the ’Good’ and ’Poor’ neurological
outcome labels:

L(ŷ,y) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(1)
where N is the batch size, yi is the true label (yi = 1
for ’Good’ and yi = 0 for ’Poor’), and ŷi is the predicted
outcome for the i-th patient. For the regression task, we
utilized the Mean Squared Error (MSE) loss function to
predict the CPC values:

L(MSE) =
1

N

N∑
i=1

(xi − x̂i)
2 (2)

where xi stands for the true CPC value, and x̂i is the pre-
dicted CPC value for the i-th patient. The total loss for the
model is the sum of these two losses, encompassing both
classification and regression objectives:

L(total) = L(ŷ,y) + L(MSE) (3)

3. Results

The data under study is provided by the PhysioNet/CinC
Challenge 2023 assembled by the International Cardiac
Arrest Research Consortium (I-CARE) [7, 8]. The perfor-
mance of our framework was evaluated officially on the
training, validation, and hidden test dataset to yield a chal-
lenge score of 0.424, 0.537, and 0.416, respectively for 72
hours. Table 1 details the performance of our algorithm at
different time windows and various performance metrics
on the official test data.

4. Discussion and Conclusion

Our initial exploration focused on the last 5-minute seg-
ment of the last hour using only 2 bipolar channels with 2
attention blocks each comprising 2 heads. However, this
resulted in over-fitting. So, our next approach focused on
the random 5-minute segment of the retained random hour,
while keeping the same framework design. This improved

our results, indicating the elimination of over-fitting. Fi-
nally, we tried to increase the effect of the attention mech-
anism from 2 to 8 attention blocks, each with 8 heads, re-
sulting in our best performance as detailed in Table 1.

This study has shown that a hybrid approach combining
1D CNNs and attention mechanisms can discern both local
and global self- and cross-attention patterns within single
and multiple EEG channels to enhance the interpretability
and predictive power, leading to efficient binary classifica-
tion of comatose patients into neurological outcomes.
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