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Abstract

Persistent atrial fibrillation (PersAF) is a category of
atrial fibrillation (AF) that endures for approximately a
week and can easily revert back to a normal rhythm.
Nonetheless, if left untreated, it can progress to chronic
AF due to increasing complexity. Thus, the timely iden-
tification of PersAF necessitates more effective automatic
detection algorithms. This research introduces a machine
learning-driven automated algorithm designed to detect
PersAF using a single-lead electrocardiogram (ECG) sig-
nal. By analyzing various time, frequency, and entropy
features extracted from 10-second ECG segments, the best
combination of features selected by deploying feature se-
lection algorithms was used to train the k-nearest neigh-
bor (KNN), decision tree (DT), and random forest (RF)
classifiers. The training and testing phases involved 105
subjects, and the model’s performance was validated us-
ing the 10-fold cross-validation technique. Among the
classifiers, RF demonstrates the highest efficacy, achieving
95.40 ± 2.28% accuracy, 96 ± 2.81% sensitivity, 93.42 ±
5.81% specificity, and 0.94 ± 0.04 F1 score. The proposed
method is thus shown to predict PersAF incidents with no-
table precision using shorter ECG segments.

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia
and has become a global health interest. AF increases the
risk of heart failure, stroke, myocardial infarction, chronic
kidney disease, and other complications [1]. AF is broadly
classified into four categories [2], of which persistent atrial
fibrillation (PersAF) is a cardiac arrhythmia that can turn
into chronic AF if left untreated and gradually causes heart
failure. Therefore, early detection of PersAF is pretty nec-
essary to avoid further complications. The researchers pre-
fer electrocardiogram (ECG) signals for a long time to pre-
dict PersAF. As AF causes due to the intermittent squeez-
ing of atria that causes the heart wall to fibrillate, the ECG
recordings of AF patients differ from the normal record-
ings as shown in Fig. 2.

Several computer-aided AF detection algorithms have

been proposed based on machine learning (ML) and deep
learning (DL) techniques [3, 4]. In automated feature-
based techniques, the irregularity of the RR interval and
the abnormality of the P waves [5] were investigated to
detect AF. The reflection of the premature atrial complex
(PAC) and heart rate variability (HRV) was explored in
[6] to detect AF. However, P-wave-based features are sen-
sitive to noise and patient-wise diversity of atrial activi-
ties [7] that mislead AF detection. Therefore, ventricu-
lar activity-based features have been preferred for AF de-
tection. In addition, various time, frequency, statistical,
HRV spectral, Poincare, and discrete wavelet transform-
based features were studied in [6, 8] for AF prediction.
The irregular nature of the ventricular response and the
similarity of this response with other arrhythmia affects
the robustness of AF prediction algorithms. To overcome
these challenges, several advanced features were extracted
from higher-order statistics and spectro-temporal domain
[7]. However, irregular ventricular activity degrades the
HRV feature-based AF detection performance in the case
of shorter segments because of the requirement of longer
segments of 1 minute or more to conclude [9].

Furthermore, several DL algorithms have been pro-
posed for automated AF detection from long-term ECGs
[10–12]. A combination of convolutional neural network
(CNN) and recurrent neural network (RNN) is used to ex-
tract high-level features from the segmented RR interval
in [10]. In [11] a ResNet-based model was proposed for
a better prediction of AF for highly imbalanced data. An
ensemble of multiple deep CNN (DCNN) classifiers was
proposed in [12] where multiple scale-dependent DCNN
classifiers were designed for better prediction. The combi-
nation of hand-crafted features along with CNN and bidi-
rectional LSTM network was also used for AF detection
[13]. For AF detection, although the DL approaches have
higher accuracy compared to the ML approaches, they re-
quire a larger dataset, higher computational cost, and lim-
ited explainability and interpretability.

This paper presents an automated approach to separate
PersAF, a special class of AF, from normal events (non-
AF) using a set of HRV, and entropy features extracted
from shorter ECG segments lasting 10 seconds. PersAF



detection via ECG has not been extensively investigated in
the existing literature to the best of our knowledge. We
have deployed two feature selection techniques to reduce
the computational burden without compromising perfor-
mance and validated the model using two publicly avail-
able highly imbalanced datasets.

2. Database Description

This study leverages two openly accessible databases
(CPSC2021) [14] containing 1436 ECG recordings from
105 subjects. These datasets were designed with the aim
of constructing resilient and adaptable algorithms for AF
detection. All the ECG recordings were sampled at 200
Hz and saved in WFDB format. Comprehensive details
about these datasets are tabulated in Table 1.

Table 1. Database Description
Category Dataset I Dataset II
Sampling Frequency (Hz) 200 200
No. of Subjects 54 51
No. of Records 730 706
No. of Non-AF Subjects 42 14
No. of AF Subjects 12 37
Max Record Length (sec.) 23712 24666
Min Record Length (sec.) 14 8

3. Methodology

The proposed method consists of three key steps: i)
ECG pre-processing and segmentation, ii) feature extrac-
tion and feature selection, and iii) ML-based PersAF clas-
sification. Following the preprocessing and segmentation
phase, the ECG signals were delineated through the uti-
lization of the ECG kit [15]. A comprehensive set of 45
features including time and frequency domains, entropy
measurements, and complex correlations derived from
Poincaré analysis are extracted to train classifiers.Two dis-
tinct feature selection techniques are employed to reduce
the number of features and finally, different classical ma-
chine learning algorithms are harnessed to discern PersAF
occurrences from non-AF events. The schematic depiction
of the proposed model is shown in Fig. 1.
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Figure 1. An overview of the proposed model for persis-
tent AF classification using ECG-derived features.

3.1. Pre-processing and Segmentation

The correct identification of onsets and ends of P, Q,
R, S, and T waves is very crucial and can be mislead-
ing due to noise and artifacts. Firstly, to remove the arti-
facts from ECG, we deployed discrete wavelet transform-
based denoising. We used ’db10’ as the vanishing moment.
Secondly, the pre-processed recordings were divided into
10-second non-overlapping segments.Finally, we deployed
the ECG-kit toolbox [15] to delineate ECG and identify
the magnitude and position of the P, Q, R, S, and T waves.
An example of preprocessed ECG signals during normal
(Non-AF) and persistent AF conditions is shown in Fig. 2.
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Figure 2. An example of ECG signals during normal
(Non-AF) and persistent AF (PersAF) conditions.

3.2. Feature Extraction

A comprehensive set of 45 distinct features is derived
from each segmented record including 33 features related
to the time domain, 7 to the frequency domain, and 5 en-
tropy. These time domain features include fundamental
statistical measures like mean, median, variance, standard
deviation, minimum, and maximum values of RR, QT,
and PP intervals. Additionally, non-linear features such
as Poincaré SD1, Poincaré SD2, complex correlation mea-
sure (CCM), SDSD, NN50, pNN50, mean and variance of
the 2nd, 3rd and 4th central moments, as well as the co-
variance of RR intervals are incorporated. Frequency do-
main features include logarithmic LF, HF, and VLF power
of RR intervals, the LF-to-HF ratio, as well as the indices
for the sympathetic nervous system (SNS) and parasympa-
thetic nervous system (PNS), along with their correspond-
ing ratio. Entropy-based features are approximate entropy,
multi-scale sample entropy, log entropy, fuzzy entropy, and
permutation entropy.

3.3. Feature Selection

The area under receiver operator characteristics (ROC)
curve-based selection algorithm [16] and the minimum re-
dundancy maximum relevance (mRMR) feature selection
method [17] are applied to reduce the number of features.



ROC is simply the graphical representation of the true pos-
itive rate versus the false positive rate. The area under the
ROC curve (AUC) thus provides the indication of the im-
portance of a particular feature for maximizing the proba-
bility of correct prediction. The features with correspond-
ing AUC values are demonstrated in Fig. 3.
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Figure 3. Bar chart representation of AUC values of the
features.

The mRMR algorithm ranks the features based on two
correlation values; one with the output class (relevance)
and the other between the features themselves (redun-
dancy). The strategy is to make relevance high and re-
dundancy low. The F statistic is considered to determine
relevance, whereas the Pearson correlation coefficient is
used for redundancy calculation. Thereafter, each feature
is assigned a performance score based on the approach to
maximize the objective function formed of relevance and
redundancy. Thus features are selected based on the as-
signed score. The features with their prediction perfor-
mance score values are demonstrated in Fig. 4.
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Figure 4. Bar chart representation of the feature scores
assigned by mRMR algorithm.

4. Results and Discussion

The PersAF classification using two different feature se-
lection techniques is shown in Fig. 5. From Fig. 5, it is
found that the accuracy increases gradually up to 33 and
30 features for ROC and mRMR-based feature selection

techniques respectively. So the optimal number of features
for ROC and mRMR were 30 and 33 respectively. The ac-
curacy either remained unchanged or decreased above the
optimal number of features.
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Figure 5. Bar chart comparing accuracies of RF classi-
fier for different feature counts ranked by AUC-based and
mRMR algorithms.

The performance of the three different classifiers (KNN,
DT, RF) using the optimal and total number of features is
shown in Fig. 6. Among the three different classifiers, RF
outperforms the rest of the classifiers.

The proposed model was validated using the 10-fold
cross-validation technique. The average performance of
the model was assessed using the top 33 features selected
by the ROC-based approach and is shown in table 2.
The average and standard deviation of classification ac-
curacy for KNN, decision tree, and random forest were
88.20± 4.52%, 92.70± 2.92%, and 95.4± 2.28% respec-
tively. Random forest classifiers had not only the highest
accuracy but also the lowest standard deviation. Compared
to the other performance metric such as sensitivity, speci-
ficity, and F1-score, random forest outperformed.

In this study, we emphasized on HRV and QT features to
differentiate PersAF from Non-AF. Among the top 33 fea-
tures selected by ROC, 75.76%, 21.21%, and 3.03% fea-
tures were time domain, frequency domain, and entropy
features respectively. On the other hand for mRMR-based
top 30 features, 76.67%, 10%, and 13.33% features were
time domain, frequency domain, and entropy features re-
spectively. This is a clear indication of the importance of
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Figure 6. Bar chart comparing classifiers accuracies for
top 30 by mRMR, top 33 by ROC, and all 45 features.



Table 2. The classification performance with ROC-based top 33 features
Classifier Accuracy Sensitivity Specificity Precision F1 Score

(Mean±SD) (Mean±SD) (Mean±SD) (Mean±SD) (Mean±SD)
KNN 88.20 ± 4.52 90.24 ± 5.62 83.40 ± 10.32 84.40 ± 8.70 0.86 ± 0.07

Decision Tree 92.70 ± 2.92 94.27 ± 3.16 89.51 ± 6.70 90.00 ± 6.20 0.91 ± 0.04
Random Forest 95.40 ± 2.28 96.00 ± 2.81 93.42 ± 5.81 93.00 ± 5.70 0.94 ± 0.04

time domain morphological features such as P waves, QT
interval, and R peak having the distinguishable character-
istics to differentiate PersAF from Non-AF. Since we fo-
cused on identifying PersAF with shorter segments, due
to the very shorter segment length, the frequency and en-
tropy information was not prominent to differentiate Per-
sAF from Non-AF.

5. Conclusion

Patients with PersAF are at high risk of suffering from
chronic AF if remains undetected. Thus, it is critical to de-
tect PersAF at an early stage. In this work, we proposed
an automated approach to identify PersAF from non-AF
using ECG. The model’s overall classification results were
95.40 ± 2.28% accuracy, 96 ± 2.81% sensitivity, 93.42 ±
5.81% specificity, and 0.94 ± 0.04 F1-score. In the future,
wavelet and empirical wavelet-based features will be in-
vestigated to identify PersAF along with other classes of
atrial fibrillation.
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