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Abstract

In this work, we describe the creation of our machine-
learning-based solution for coma prognosis after cardiac
arrest using longitudinal EEG and ECG recordings for the
”Predicting Neurological Recovery from Coma After Car-
diac Arrest: The George B. Moody PhysioNet Challenge
2023”. Our team, “ComaToast”, had its best submission
ranked 28 out of 36 teams selected worldwide, with a chal-
lenge score of 0.381 on the official leaderboard for the hid-
den test set. We use a combination of age and signal fea-
tures from EEG and ECG recordings. Frequency domain
features, specifically mean power spectral density from 4
different bands of frequencies (Delta, Theta, Alpha and
Beta) and mean Burst Suppression Ratio, were extracted
from pre-processed EEG recordings from the first and last
available recording for a given patient. Features like mean
and standard deviations were extracted along channels for
ECG recordings. After imputing missing values, these fea-
tures are fed to an XGBoost classifier for the final binary
classification of the outcome prediction task. The features
are fed to a random forest regressor to predict the CPC
outcome for every patient. A solution like ours, which
uses a simple model and training technique, may be more
viable than deep-learning solutions in general use cases.
In our final model, our approach achieved a 5-fold cross-
validation score of 0.34 on the public train set.

1. Introduction

Cardiac Arrests are one of the leading causes of cardiac-
related deaths worldwide. More than 350,000 people suf-
fer from an out-of-hospital cardiac arrest every year in the
United States alone [1,2]. Even if patients are successfully
resuscitated after the arrest, other complications are very
likely to arise. For patients surviving initial resuscitation,
the most common condition that occurs after, often lead-
ing to death, is severe brain injury [3]. Doctors are often
put in a difficult position to provide an accurate prognosis
for such patients in coma, where a wrong prognosis may

serve as a life sentence to the patient. With such a heavy
responsibility in their hands, continuous brain monitoring
can be beneficial in aiding doctors to make such decisions

In this paper, we present our machine learning based
solution for Outcome Prediction in Postanoxic Coma Pa-
tients as part of the 2023 George B. Moody PhysioNet
Challenge. Teams were invited to develop automated so-
lutions that use longitudinal electroencephalogram (EEG)
and other recordings to predict patient outcomes after car-
diac arrest. [4,5]. An EEG is a procedure where the brain’s
electrical activity is recorded using electrodes placed on
different locations of a patient’s scalp. In addition to the
EEG recordings, teams were also given access to Electro-
cardiogram (ECG) recordings, a simple, non-invasive pro-
cedure that records the heart’s electrical activity. These
EEG recordings are combined with the patient’s ECG fea-
tures and other features and are used to predict patients’
neurological recovery following cardiac arrest.

We tackle this challenge by using a machine learning
based approach, where a series of frequency domain fea-
tures are extracted from the patient data. We make sure to
use data collected from two different timestamps, one from
the earliest time from when the data was available from
the time of admission of the patient and also from the last
available data for the given patient. These EEG frequency
features are combined with other patient features like age,
sex, location of arrest, etc., and also ECG features. We
then employ our hyper-parameter tuned XGBoost machine
learning classifier to predict patient outcomes from the ex-
tracted features for every patient individually. We will dis-
cuss our methodology and results in the coming sections
of the study in upcoming sections.

2. Methods

In this section, we will go over the technical details of
our study in detail. Please refer to 1 for visualisation of
the overall pipeline. We shall first talk about the data pre-
processing techniques we employed. From there, we will



Figure 1. Overall Solution Pipeline

discuss our featurising approach, model selection and fi-
nally move on to our model testing techniques used to pre-
dict final patient outcomes. All our presented results come
from a stratified 5-fold cross-validation, where we ensure
all folds have the same ratio of positive and negative out-
come patients.

2.1. Data Preprocessing

The dataset used for the challenge was collected from
various hospitals across the US and Europe with the help
of investigators from the International Cardiac Arrest Re-
search Consortium (I-CARE)[6]. Even though data from
1020 different patients was collected, only 607 patients,
or approximately 60% were provided to the teams. The
challenge organisers provided teams with different modal-
ities of data, which were divided into signal and clinical
data. The signal data consisted of the EEG, ECG, and
other modality recordings. In the clinical data, features
like age, sex, a hospital identifier, the arrest location, and
the type of cardiac rhythm recorded during resuscitation
were present. For our approach, we decided to only use
EEG and EEG data from the signal data provided and all
the features from the clinical data. As different amounts
of data were present for different patients, we need to en-
sure our pre-processing steps work for varying amounts of
data. In our approach, we only utilise EEG and ECG data
from the first and last hour of the available data for every

patient, where the rest of the data is discarded. We believe
such pruning is warranted as the model can now look at
the difference in feature pattern from when the patient was
admitted to when they left to determine the outcome and
CPC score without being bogged down by data from other
times.

The selected EEG data was first filtered using a band-
pass filter of two parts. First, a Butterworth [7, 8] low
pass filter is set to a frequency cutoff of 30Hz to elimi-
nate high-frequency noise with more than 30Hz. A high
pass filter followed this to eliminate low-frequency noise
and baseline wander from the EEG recordings, where the
cutoff frequency was set to 0.1Hz. This filtered signal was
then resampled down to 60Hz to reduce the size of each
recording while preserving only the information we may
require. This value of 60HZ was chosen because of the
Nyquist sampling theorem[9], which states that a wave
must be sampled at twice the value of the frequencies of
interest. As we only used frequencies up to 30Hz for cre-
ating our feature set physiologically, this resampling rate
of 60 HZ was set. This data was then passed through a
Savitzky–Golay filter from smoothing to remove any un-
wanted irregularities in the signal. The signal was finally
scaled between -1 and 1 to negate the difference in signal
amplitudes across patients. As quite a few channels were
given for every patient, only a select 19 channels (C3, C4,
Cz, F3, F4, F7, F8, Fp1, Fp2, Fz, O1, O2, P3, P4, Pz, T3,



T4, T5, T6) were chosen for featurisation. A similar pre-
processing approach was also used for ECG recordings,
where all the signals were filtered, resampled, smoothed,
and scaled before featurisation. No pre-processing was
performed on the clinical data, and it was directly passed
to the featurising step.

2.2. Featurising

The goal of the featurising step is to convert the fil-
tered data of every patient into concise information-rich
features which can be used effectively for the classifica-
tion tasks. The clinical data is first featurised by con-
verting all categorical variables like age to numerical ones
and are stacked into a list of 8 numbers. Next, Using the
19-channel EEG signals, we find nine signals made from
the difference of the 19 channels (Fp1-F7, F7-T3, T3-T5,
T5-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F3). Using
these nine different channels, we compute five unique fea-
tures, the mean Delta Power Spectral Density (PSD) with
a frequency range from 0.5 to 8, mean Theta PSD with
a frequency range from 4 to 8, mean Alpha PSD with a
frequency range 8 to 12, mean Beat PSD with frequency
range 12 to 30 and finally mean Burst Suppression Ratio
(BSR) calculated with a threshold of 0.5 and duration of 1
second. Thus, we have 18 features for every hour for every
patient, giving us 36 EEG features for a given patient, as
only data from the first and last hour is used. Similarly,
for the ECG recordings, the mean and standard deviations
across the channels were used as the features, giving us 36
(18x2) unique ECG features. Thus, we are left with 80 (8
from clinical data, 36 from EEG data and 36 from ECG
data) unique features to predict for every patient. How-
ever, in some cases, patients may only have a single hour
of available data or even no available data. In these cases,
the available features are padded with ”nan” values. Fi-
nally, once a trainset of features is created from the training
data, a simple imputer is run on the trainset to impute all
missing values before training. Thus, for training, we were
left with a 485x80 matrix of 485 patients and 80 features
for every patient after combining four folds of the 5-fold
cross-validation process. Similarly, a 122x80 matrix was
used to test the final fold.

2.3. Model Selection

In this section, we will discuss how the right ML clas-
sifiers were chosen for both tasks. As the task of outcome
prediction was a binary classification task, multiple viable
classifier options were present. The challenge was that the
classifier had to be simple enough to learn from a training
set of approximately 480 data points and have a very low
false positive ratio, as per the given challenge metric.

Training Validation Test Ranking
0.34± 0.02 0.33 0.38 28/36

Table 1. True positive rate at a false positive rate of 0.05
(the official Challenge score) for our final selected entry
(team ComaToast), including the ranking of our team on
the hidden validation set. We used 5-fold cross validation
on the public training set, repeated scoring on the hidden
validation set, and one-time scoring on the hidden test set.

We experimented with different machine learning mod-
els like Support Vector Machines (SVMs), Linear Regres-
sors, K-Nearest Neighbours and various tree-based algo-
rithms. Among the various tree-based machine learning
algorithms, Decision Trees (DT), Random Forest [10],
and Gradient Boosting Trees (GBT) each offered distinct
strengths. However, XGBoost [11] stood out as the su-
perior choice for its versatility and state-of-the-art perfor-
mance in various tasks. We found that tree-based algo-
rithms performed well for our use due to their simplicity
of splitting the data based on feature values. XGBoost
took this further by employing extreme gradient boosting.
The scalability, flexibility, ability to handle missing data,
and custom loss functions made XGBoost the ideal choice
for our outcome prediction model. Similarly, with experi-
mentation, we found that using a Random forest regressor
worked best for the CPC prediction model.

2.4. Model Evaluation

In our model evaluation phase, several experiments were
run to find the most appropriate hyperparameters for the
XGBoost-based outcome prediction model and the random
forest-based CPC prediction model. We found our ideal
values for the outcome prediction model to be 144 for the
number of estimators, ’hist’ for the tree construction algo-
rithm, 500 for the maximum depth, 100 for the maximum
leaves and 0.85 for the L2 regularisation value. The CPC
model used values 144 for the number of estimators and
460 for the maximum leaves in each tree.

3. Results

A 5-fold cross-validation setup was used to test both the
outcome and CPC models. All folds were stratified to en-
sure they had the same ratio of good to bad outcome pa-
tients. Our models gave an average score of 0.34 for the
official challenge score on our local testing. Our final mod-
els were tested in the Official Phase of the challenge and
obtained a score of 0.38 on the official hidden test set un-
der the name ”ComaToast”. Further details can be seen in
Table 1



4. Discussion and Conclusions

We tested various machine and deep learning ap-
proaches to find the best solution to the presented chal-
lenge. We believed that deep learning approaches
could work well due to the size of the data provided.
We tested various convolutional-based architectures like
AlexNets[12], ResNets[13] on the filtered signals and also
by trying to convert them into 2D spectrograms but could
not achieve competitive results. We observed that even
though these methods seemed to be giving us very good
accuracy, upwards of 80%, they could not meet the crite-
ria of 5% false positive ratio required by the official chal-
lenge score. Even when techniques like class bias and
custom loss functions were introduced, no significant im-
provements in results were observable. So, we settled on
a relatively simple classifier-based approach using an XG-
Boost model for our final approach. We prioritised fea-
ture extraction and extracted 80 unique features per patient
based on clinical information, ECG and EEG recordings.

Our solution achieved an official challenge score of 0.38
on the official leader board on the hidden test set. Even
though this score is not very high, the false positive ra-
tio of the implemented solution is very low. Thus, it is
a good candidate for assisting doctors, where doctors can
shortlist all the patients screened by the model and conduct
thorough examinations on them alone. In the future, we
wish to improve the model’s performance by introducing
transformer[14] based predictive models into the solution
pipeline. Techniques like pre-training can help build trans-
former models which are highly accurate while also main-
taining a very low false positive rate. To implement these
kinds of solutions in real world use cases, the solutions
must undergo rigorous testing and incrementally be up-
dated to become multi-modal in nature, as different health
centres might use different diagnostic tools for treatment.
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