An Algorithm For Non-invasive Mapping Based On Cardiac Anatomy and
12-lead Electrocardiogram Data

Svyatoslav Khamzin®, Anastasia Bazhutina®, Alexandr Sinitca', Mikhail Chmelevsky!-, Stepan
Zubarev!, Margarita Budanova'!, Werner Rainer!

1XSpline S.p.A, Bolzano, Italy
2Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland

Abstract

Cardiac mapping provides detailed insights into a pa-
tient’s unique heart anatomy and electrical patterns. Cur-
rently, the most accurate method for creating an activa-
tion map is an invasive mapping system, which involves
the insertion of recording devices and direct measurement
of electrograms from the heart’s surface. In this paper, we
propose an algorithm that integrates cardiac anatomical
information with 12-lead electrocardiogram (ECG) data
to create activation maps without invasive procedures.

To find the activation map of the corresponding ECG
of the patient, we solve the multiple forward ECG prob-
lems. We use the anisotropic eikonal equation in conjunc-
tion with the Lead-Field approach to compute the ECG. By
varying the activation area parameters and conductivity
parameters in the eikonal equation we generate a subset
of ECGs. We use a variational autoencoder to param-
eterise the 12-channel ECG. Then we train a surrogate
model on the generated dataset and apply it to find the
closest solutions to the clinical ECG. To calculate the acti-
vation map, we use the average solution obtained from the
found range of parameters that give close solutions to the
patient’s ECG.

Electroanatomical mapping (EAM) data from the left
ventricular endocardium of five patients were used to vali-
date the algorithm. Comparing local activation times, the
mean absolute error was 16.16 ms and a mean correlation
of 0.82 was obtained between EAM endocardial activation
times and the proposed algorithm. A non-invasive algo-
rithm for cardiac mapping based on 12-lead ECG shows
promising results and has the potential to be a useful tool
in clinical practice.

1. Introduction

The use of electrocardiography (ECG) in conjunction
with medical imaging data such as CT or MRI has the
potential to solve the problem of reconstructing electrical

activity on the surface of the heart, also known as non-
invasive mapping. In recent years, many efforts have been
made to solve this problem using electrocardiographic
imaging (ECGi) methods [1, 2]. However, recent studies
[3] show that in some cases this approach inaccurately re-
produces the electrical activation map and demonstrates
low correlation between invasive and non-invasive electri-
cal activation patterns.

Another prominent approach non-invasive reconstruc-
tion of electrical activity is to use an electrophysiological
model to identify optimal model parameters that reproduce
the patient’s ECG. This approach shows promising results
on artificial [4,5] and invasive dataset [6]. In this study we
propose a new algorithm of non-invasive mapping based
on electrophysiological modelling which we validate on
invasive dataset.

2. Methods
2.1. Data

This study utilized retrospective data from five patients
with a wide QRS complex (>120 ms) and presumed left
bundle branch block. These data include cardiac com-
puted tomography (CT) images, 12-lead ECG recordings
and electroanatomical mapping (EAM) of the left ventric-
ular endocardial surface. For each patient, a 3D patient-
specific geometry model of the heart, torso and lungs was
created by a medical expert using semi-automated segmen-
tation of the cardiac CT scans. Each invasive dataset con-
tains between 116 and 354 numbers of recorded electro-
gram (EGM) signals.

2.2.  Data processing

To process the EGM signals we are used the CoM algo-
rithm described in [7]. In addition, we relied on this article
[8] to evaluate the quality of the original signals. Thus,
we processed all the EGM signals in the dataset. We then
compared the obtained local activation times with those



originally recorded.The mean correlation of local activa-
tion times processed by the internal algorithms of the EAM
system with those processed by the algorithm described
above was 0.91 for the left ventricular endocardium.

Gaussian process regression was used to interpolate the
local activation times on the surface of the heart with an
error estimate in the form of a standard deviation given
for each point. This type of interpolation was based on the
article [8], where the author proposed an algorithm to eval-
uate the error of the EAM data from the distance between
the EAM points to the surface mesh and the fragmentation
of the electrogram signals at specific points.

A finite element tetrahedral mesh was then generated
using Gmsh [9]. In the next step, the universal ventric-
ular coordinate(UVC) system was defined at each node
of the heart geometry [10]. To accurately represent the
anisotropic properties of the cardiac tissue, a rule-based
method [11] was employed to assign myocardial fiber ori-
entation. The coordinates of the ECG leads were manually
placed on the torso surfaces by a medical expert for further
calculation of the 12-lead ECG.

2.3. ECG processing

In a first step, we estimated the boundaries of the QRS
complex in the patients’ ECG signals using the Hamilton-
Thompson algorithm [12]. Then to parameterize the ECG
signals we used a neural network. To standardise the inputs
for the neural network, we cut off the signal with the QRS
complex within the boundaries.

We used a convolutional variation autoencoder (CVAE)
to convert the ECG signal into a set of features (also called
latent space). The input to this neural network was a QRS
signal of dimension (i,300,12), where i is the number of
12-lead QRS signals to be processed. CVAE has three sys-
tem units: encoder, latent space unit and decoder. An en-
coder consists of several successive convolutional blocks.
Each block consists of a convolution layer, a batch nor-
malisation layer, an activation layer and a maximum pool-
ing layer. The encoder block transforms a QRS complex
into k feature vectors, where k is the parameter of the en-
coder. We used the same encoder unit for the QRS signal
of each lead with shared weights. At the output of the en-
coder, the received features are concatenated into a block
of latent space and the dimension is further reduced by
the linear transformation. One-dimensional deconvolution
blocks are used to decode the signal. Each block consists
of a convolutional transpose layer, a batch normalisation
layer, and an activation layer.

The loss function for training this neural network is as

follows:
12
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ey
, where QQ RS, is input QRS signal in one on the 12 lead,
QRSpred - decoded QRS signal, KL - Kullback-Leibler
divergence, N (i, o) - normal distribution with parameters
1 and o given out from latent space.

2.4. Electrophysiology model

To model the depolarisation process of the heart, we
used the eikonal approach. In the eikonal equation, the
arrival times of the wave front ¢, in the myocardial area
) are described based on the spatially inhomogeneous or-
thotropic velocity function, encoded as D(x), and the cer-
tain initial activation area I" at time ¢y. The eikonal equa-
tion has the form:
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where t, is a positive function describing the wavefront
arrival time at location x and D symmetric positive def-
inite 3 X 3 tensor which is determined by the myocar-
dial fiber direction field and myocardial tissue conductivity
along:across set here as 6.5:1.

To calculate the 12-lead ECG, the lead-field approach is
used, which is written as follows:

V(t) = / VZ(2) GVVin(w iz (3)
Q

where (2 is the heart domain and Z(z) is the lead field of
the specific ECG lead. The lead field is the potential field
created by a unit current applied at the electrode location
€T
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where c; are relative contributions of the two or more elec-
trodes and ¢ is Dirac’s delta function.

2.5. Model parameter setup

To simulate the His-Purkinje system, we used the ap-
proach proposed in the [5] based on myocardial activation
from root points. These root points characterise the junc-
tions of Purkinje fibres with the myocardium. In order to
limit the range of parameters that need to be varied when
using the model, we restricted the range of variation of root
points coordinates using UVC in accordance with experi-
mental data of the human His-Purkinje system anatomy
[13].



Additionally, to implement possible heterogeneity of
myocardial conduction properties (e.g. caused by the pres-
ence of fibrosis) we restricted the range of possible con-
duction velocities of the excitation wave across the my-
ocardium from 0.2 m/s to 0.7 m/s. For the variation of con-
duction velocities, we used an interpolation function with
conduction parameters defined at the centres of the seg-
ments. To interpolate the value to the other mesh nodes,
we used Gaussian processes regression.

2.6. Surrogate model

To decrease the quantity of simulations, we employed a
’surrogate” model that translates the varying model param-
eters into a vector of CVAE features. We employed a neu-
ral network comprising dense blocks that include dense,
batch normalization, and dropout layers. Mean square er-
ror was selected as the loss function to train the neural net-
work.

2.7. Inference of activation maps

For inference of electrophysiological model parameters
related to patient’s ECG we used features obtained from
CVAE. We solve the following optimisation problem:

f(p) = (CVAE(QRSpat) — SM(p))? Q)

where f is function for optimization, CVAE(QRSpa:) is
CVAE features obtained from patient’s QRS, SM(p) is
CVAE features predicted by surrogate model for the vari-
able parameters of the electrophysiological model p.

We solve the problem for 100 different initial parameter
vectors to obtain sets of parameters reproducing the real
ECG. Then using the mean values of the obtained solutions
we reproduce the activation map.

2.8. Validation metrics

We used three different metrics to validate our results.
The first one is the correlation coefficient between LAT on
the LV endocardial surfaces (EAM vs non-invasive). To do
so, we use the Spearman correlation coefficient.

As a second validation metric we used the mean absolute
error between endocardial activation times (EAM vs non-
invasive). It can be calculated using the following formula:

1 — —
MAE = — ‘Yi—Yi 6
n; (6)

where n is the number of points and Y; and }7; are LAT
values.

The last metric is related to the quantification of the dis-
tance between the two late activation points determined in-
vasively and non-invasively. To remove any artifacts re-

sulting from noise in the invasive data, we calculate the
centre of mass of the points contained in the surface region
with the 15% of latest activation, for both invasive and non-
invasive activation maps, and then calculate the Euclidean
distance between the centres of mass.

3. Results

We present here a comparison of proposed non-invasive
algorithm activation maps and EAM data. In table 1 shown
results of computed validation metrics for non-invasive ac-
tivation maps. In all cases, the Pearson correlation between
EAM and non-invasive algorithm was more then 0.75 and
mean correlation was 0.82. Figure 1 shows an example
of activation maps obtained from EAM data and the non-
invasive algorithm.

On the other hand, it is worth noting that the average
distance error was 14.9 mm, which is a significant error.
However, the average distance from the EAM points to
the cardiac mesh was about 9.2 + 6.1 mm. Therefore,
we assume that the obtained error characterises not only
the accuracy of the algorithm, but also includes the er-
ror obtained in the process of invasive data collection and
transfer of these data to the anatomical surface obtained
from CT images. The mean error in the comparison local
activation times between the non-invasive activation map
and the EAM data was 16.16 4 9.1 ms. We compare this
value with the standard deviation obtained by the Gaussian
process interpolation algorithm described in [8]. Obtained
standard deviation ranged from 3.5 to 12.1 ms.

Table 1. Comparison metrics for validation dataset and
algorithm results.

Patient LAT MAE, Distance ECG
number | correlation ms error, mm | correlation
001 0.76 21.5+13.9 21.3 0.85
002 0.84 12.8 £ 6.7 8.6 091
003 0.85 115+ 64 19.0 0.90
004 0.79 2334+ 12.2 21.5 0.85
005 0.88 11.74+74 4.1 0.92
Mean 0.82 16.16 £9.1 14.9 0.89

A 0.89 correlation coefficient was obtained when com-
puted and clinical ECGs were compared. An example of
comparison of ECG signals is shown in Figure 2.

4. Conclusion

In this paper we proposed a new algorithm for non-
invasive cardiac mapping. Our algorithm shows a high
correlation between the patient’s 12-lead ECGs and calcu-
lated ECG, with a correlation of 0.89. Comparing endocar-
dial local activation times obtained by proposed algorithm
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Figure 2. Example of comparison clinical and obtained by
non-invasive algorithm ECGs.

with EAM data from five patients, non-invasive algorithm
showed a mean correlation of 0.82 between left ventricu-
lar endocardial maps. The mean absolute error for local
activation times was 16.16 ms and the mean absolute error
between late activation zones was 14.9 mm. These results
demonstrate the potential of a non-invasive mapping sys-

tem

to estimate the electrical activity of the heart.
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