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Abstract

The study focuses on automating ECG analysis, a cru-
cial tool for cardiac evaluation and treatment decisions.
Two classifiers were developed to detect heart conduction
disorders and infarctions from 12-lead ECGs. These clas-
sifiers were trained on three open datasets after ECG pre-
processing to remove noise and select relevant features.

The first classifier (10 classes) identifies conditions
of ventricular conduction system: normal ECG, LBBB,
ILBBB, ventricular premature complex, left anterior fasci-
cular block (FB), left posterior FB, IRBBB, RBBB, nonspe-
cific intraventricular conduction disturbance, and ventric-
ular preexcitation. The second classifier (5 classes) distin-
guishes between non-infarcted ECGs and various types of
myocardial infarctions location.

For each QRS complex, we calculate statistical, time-
domain, frequency features, and scalograms. Then we
train classifiers combining XGBoost for statistical fea-
tures, an autoencoder+neural network for deep-learning
features, and ResNet for scalograms. An ensemble ap-
proach was employed to get final class prediction. We
show that the developed ensemble model achieve the mean
F1-score of 0.70 and 0.76 for first and second classifier re-
spectively. The study’s key strength lies in its diverse fea-
ture extraction methods, enhancing the predictive power of
machine learning models.

1. Introduction

The recognition of abnormalities in the electrocardio-
grams (ECGs) by computers is widely used by cardiolo-
gists to categorize long-term ECG recordings. The com-
bination of Machine Learning (ML) models and ECGs has
opened up exciting possibilities for improving the accuracy
and efficiency of these diagnostics.

Various feature extraction techniques have been em-
ployed in this context, including morphological features
[1], frequency-domain features [2], complex heartbeat rep-

resentations [3], wavelet-based features [4], and statistical
features [5].

These extracted features can then be classified using a
range of methodologies. The proposed techniques encom-
pass simple classifiers like linear discriminants (LD) [6],
nearest neighbor rules [7], and decision trees [8], as well
as more advanced approaches such as neural networks [9],
conditional random fields [10], and, more recently, deep
learning techniques [11, 12].

The main difficulty in developing such models is that
multiple labels can be assigned to a single ECG recording.
Thus, the requirements for the training dataset, which must
contain a sufficient number of rare cardiac disease combi-
nations, are increased.

In this study, we propose an ensemble of ML models
for the classification of ECG diseases. For this prelimi-
nary study we selected only QRS features to classify heart
ventricles diseases. We propose a different ways to extract
ECG features and then using ensemble of ML models to
finalize classification.

2. Methods

In this work, we built two ML classifiers to determine
the diagnosis from the ECG - a 10-class classifier and a 5-
class classifier. The pipeline of this study is presented on
figure 1.

For the 10-class classifier, we selected the following la-
bels: normal ECG, left bundle branch block (LBBB), in-
complete left bundle branch block (ILBBB), ventricular
premature complex (VPCs), left anterior fascicular block
(LAFB), left posterior fascicular block (LPFB), incom-
plete right bundle branch block (IRBBB), right bundle
branch block (RBBB), non-specific intraventricular con-
duction disturbance (NICD), and ventricular preexcitation
(VPE) (see Table 1). For the 5-class classifier, we selected
the following labels: non-infarcted ECGs, anteroseptal
myocardial infarction (MI), lateral MI, inferior MI, and an-
terior MI (see Table 2).



Figure 1. Pipeline for the classification of ECGs.

2.1. Initial data

To train and validate our classifiers, we used three 12-
lead datasets: the dataset of Chapman University [13], the
PTB-XL dataset [14], and the dataset of Shandong Provin-
cial Hospital (SPH) - [15]. The datasets were collected
from different clinics, each containing a different number
of labels and records. Moreover, there is a significant im-
balance in the data, which makes the classification task
challenging. In addition, only 12-lead ECG recordings
with a frequency of 100 out of 500 Hz were used. The
ECG recordings were divided by a ratio of 0.8 to 0.2 for
training and validation data, respectively.

2.2. ECG preprocessing

At the initial stage, the ECG data has been filtered and
any unsuitable signals have been excluded. The signals
have been further processed to remove baseline wanders,
along with other types of noise. We used moving average
filter to remove baseline wander and to remove other types
of noise, such as power line noise, muscle noise and respi-
ration noise bandpass filter was used, with range of 0.1 50
Hz.

Then, we estimated the boundaries of the QRS com-
plex in the patients’ ECG signals using the Hamilton-
Thompson algorithm [16]. To standardise the inputs for
the neural network, we cut off the signal with the QRS
complex within the boundaries.

2.3. Statistical features classification

For one of the ensemble ML model we used statistical
features and XGBoost model. Similar approach was pro-
posed in recent article [5]. The mean and median features
were utilised to determine the central tendency of the ECG
signal. To capture the statistical dispersion of the ECG,
features such as standard deviation, range, and interquar-
tile range was employed. The kurtosis and skewness pa-
rameters are employed to determine the degree of asym-

metry and peakedness of the ECG signal distribution. So,
we are extract statistical features from every lead signal
and used concatenated vector of features to classify ECG
using XGBoost classifier.

Additionally statistical features was used as additional
step of ECG filtering. ECG signals with statistical features
beyond 3 sigma were excluded from training and valida-
tion.

2.4. Wavelet features classification

To train the deep learning model, we used a compre-
hensive approach that involved transforming 12-lead ECG
signals into complex 3D representations. This transforma-
tion was achieved by using the Continuous Wavelet Trans-
formation (CWT) technique, which uses a Morlet mother
wavelet as the basis. By applying the CWT, we generated
scalograms [17], which are essentially scaled representa-
tions of the ECG signals. These scalograms took the form
of 3D images, incorporating both time and frequency di-
mensions.

These 3D images were then used as the primary input
data for a Residual Neural Network (ResNet) [18]. In the
final stage of our model architecture, we implemented a
fully connected layer with the Sigmoid as an activation
function. Depending on the specific classification task, we
used either a linear layer with 10 outputs for a 10-class
classification problem or a linear layer with 5 outputs for
a 5-class classification problem. The ResNet was used to
solve the multi-label classification problem for ECGs.

2.5. Deep learning features classification

We used a convolutional variation autoencoder (CVAE)
to convert the ECG signal into a set of features (also called
latent space). The input to this neural network was a QRS
signal of dimension (i,300,12), where i is the number of
12-lead QRS signals to be processed. CVAE has three sys-
tem units: encoder, latent space unit and decoder. An en-
coder consists of several successive convolutional blocks.



Each block consists of a convolution layer, a batch nor-
malisation layer, an activation layer and a maximum pool-
ing layer. The encoder block transforms a QRS complex
into k feature vectors, where k is the parameter of the en-
coder. We used the same encoder unit for the QRS signal
of each lead with shared weights. At the output of the en-
coder, the received features are concatenated into a block
of latent space and the dimension is further reduced by
the linear transformation. One-dimensional deconvolution
blocks are used to decode the signal. Each block consists
of a convolutional transpose layer, a batch normalisation
layer, and an activation layer.

The loss function for training this neural network is as
follows:

L =

12∑
n=1

||QRStrue−QRSpred||2+KL[N(µ, σ), N(0, 1)]

(1)
, where QRStrue is input QRS signal in one on the 12 lead,
QRSpred - decoded QRS signal, KL - Kullback-Leibler
divergence, N(µ, σ) - normal distribution with parameters
µ and σ given out from latent space.

For ECG classification we used trained CVAE on de-
scribed datasets and then used features from the latent
layer for the ECG classification task. For this, we im-
plement a neural network with several dense layers and a
sigmoid layer as an output layer. We used a binary cross-
entropy loss function to train this classifier.

2.6. Ensemble of ML models

In our work, we employed ensemble methods, which
merge different algorithms and architectures to generate
predictions by aggregating their outputs. To combine ML
model outputs we utilized the averaging approach, where
each model’s prediction is given equal weight in the final
decision-making process.

3. Results

The results of the ensemble of ML models for 10-class
and 5-class classification are shown in Table 1 and Table 2
respectively. For both classifiers, we obtained high val-
ues for accuracy, but the considered dataset was imbal-
anced, so we have focused further description for the F1
score, sensitivity, and specificity. For the 10-class classi-
fier, we got a value of F1-score higher than 0.7 for Nor-
mal ECG, LBBB, LAFB, IRBBB, and RBBB. In addition,
we obtained a fairly good ratio (≥ 0.8) of sensitivity and
specificity for Normal ECG, LBBB, LAFB, and RBBB.
We did not have a high sensitivity (0.72) for IRBBB. This
was because a proportion of true IRBBB cases were clas-
sified as RBBB and normal ECG. For ILBBB, LBFB, and
VPE we obtained zero values for F1 and sensitivity, again

due to the imbalance of the dataset and the low presence
of these classes in the training and validation sets. For
VPCs, we got low values of F1-score and sensitivity. This
can be explained by the chaotic appearance of VPCs on
ECGs, while we used only one QRS complex by the 12-
lead ECG in the classification. As a result, VPCs may
not have reached the selected QRS complex. We also got
low F1 scores and sensitivity values for NICD. ECGs in
NICD can vary from patient to patient. This may be due to
the presence of fibrotic changes and infarcts that affect the
electrical excitation of the heart. Thus, ECGs from patients
with fibrosis and block not related to LBBB and RBBB
may be attributed to NICD, complicating NICD classifica-
tion.

For a 5-class classifier, we achieved an f1-score (≥ 0.7)
and a reasonably balanced sensitivity-to-specificity ratio
(≥ 0.8) for non-infarcted ECGs, anteroseptal MI, and in-
ferior MI. However, we observed zero values for both the
f1-score and sensitivity in the cases of lateral and anterior
MI. We attribute this subpar performance for these classes
to their limited representation within the training dataset.

4. Discussion and Conclusions

This paper presents the outcomes of employing an en-
semble of machine-learning models for ECG-based diag-
nosis classification. We explored two classifiers, one with
10 classes and another with 5 classes. Our evaluation re-
vealed good accuracy and performance, as measured by
the f1-score and the sensitivity-to-specificity ratio, for cer-
tain diagnoses. However, we observed suboptimal out-
comes for specific diagnoses, primarily stemming from
class imbalance issues.

Furthermore, our classifier utilizes a 12-lead ECG as
input, with only one QRS complex per lead, which may
impact the accuracy of ventricular premature contractions
(VPCs) classification. In forthcoming research, we aim to
enhance classification outcomes by addressing class im-
balances through the generation of synthetic samples.
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