
Influence of the Training Set Composition on the Estimation Performance of 

Linear ECG-Lead Transformations 

Daniel Guldenring1, Dewar D Finlay2, Raymond R Bond2,  

Alan Kennedy2, Peter Doggart2, Ghalib Janjua3, James McLaughlin2 

1HS Kempten, Kempten, Germany 
2Ulster University, Belfast, United Kingdom 

3Robert Gordon University, Aberdeen, United Kingdom 
 

Abstract 

Linear ECG-lead transformations (LELTs) are used to 

estimate unrecorded target leads by applying a number of 

recorded basis leads to a LELT matrix. Such LELT 

matrices are commonly developed using training datasets 

that are composed of ECGs that belong to different 

diagnostic classes (DCs).  

The aim of our research was to assess the influence of 

the training set composition on the estimation performance 

of LELTs that estimate target leads V1, V3, V4 and V6 from 

basis leads I, II, V2 and V5 of the 12-lead ECG.  Our 

assessment was performed using ECGs from the three DCs 

left ventricular hypertrophy, right bundle branch block 

and normal (ECGs without abnormalities).   

Training sets with different DC compositions were used 

for the development of LELTs matrices. These matrices 

were used to estimate the target leads of different test sets. 

The estimation performance of the developed matrices was 

quantified using root mean squared error values 

calculated between derived and recorded target leads.  

Our findings indicate that unbalanced training sets can 

lead to LELTs that show large estimation performance 

variability across different DCs. Balanced training sets 

were found to produce LELTs that performed well across 

multiple DCs. We recommend balanced training sets for 

the development of LELTs.  

 

 

1. Introduction 

Linear electrocardiographic (ECG) lead trans-

formations (LELTs) are used to estimate or derive 

unrecorded target leads by applying a number of recorded 

basis leads to a LELT matrix [1, 2]. LELTs are a well-

established concept in computerized electrocardiography. 

Two main application areas of LELTs have been 

established.  

One of these established application areas is the 

estimation of leads that are not commonly recorded in 

clinical practice.  The estimation of these leads is typically 

performed using ECGs that are recorded in a standard 

format. One example for this application area is the 

estimation of the Frank vectorcardiogram (VCG) [3, 4] 

from the Mason-Likar [1] 12-lead ECGs. This estimation 

is performed as the Frank VCG is thought to offer 

prognostic and diagnostic information that is in addition to 

the information contained in the 12-lead ECG. A further 

example of this application area is the estimation of device 

specific leads. This approach allows for the utilization of 

existing standard 12-lead ECG databases for the 

performance assessment of ECG devices that make use of 

non-standard leads [5].  

The other established application area of LELTs are 

reduced lead systems. These systems aim to estimate the 

unrecorded leads of the 12-lead ECG [6] or the Frank VCG 

[2] from a reduced number of monitoring compatible 

electrodes. Such LELTs are used in continuous ECG 

monitoring applications where the information provided 

by the estimated lead sets is of interest, but the direct 

recording of the estimated lead set would be challenging 

due to electrode locations that are not suitable for 

continuous ECG monitoring. 

LELT matrices are commonly developed using training 

sets and multivariate linear regression analysis [3, 6]. 

Training sets typically contain ECG data from different 

subjects and contain ECGs that belong to different 

diagnostic classes. The composition of the diagnostic 

classes in the training sets used for the development of 

LELTs is thought to have an influence on the estimation 

performance of the developed LELT matrices.  However, a 

systematic assessment of the extend of this influence has, to 

the best of our knowledge, not been reported in literature. 

The aim of our research was to assess what influence the 

composition of the diagnostic classes in a training set has on 

the estimation performance of LELTs.  This assessment was 

conducted on a set of LELTs that has previously been 

studied [6] and been adopted into clinical practice [7]. 



2. Material and methods 

2.1. Study population 

Our study population was composed of 229 subjects 

with no abnormalities in their ECGs (normal), 232 subjects 

with left ventricular hypertrophy (LVH) and 250 subjects 

with right bundle branch block (RBBB). Random sampling 

without replacement was used to generate 200 different 

instances for each of the different train and test set 

compositions outlined in Table 1. This was performed 

using ECG data of the diagnostic classes normal, LVH and 

RBBB obtained from the subjects in the study population. 

Table 1. Composition of the different train and test sets. 

name typea 
composition 

#normb #LVHc #RBBBd 

TRnorm train 171 0 0 

TRlvh train 0 171 0 

TRrbbb train 0 0 171 

TRmix train 57 57 57 

TEnorm test 55 0 0 

TElvh test 0 55 0 

TErbbb test 0 0 55 

Notes. atrain indicates a dataset composition that was used for 

the generation of LELT matrices and test indicates a dataset 

composition that was used for the performance assessment of LELT 

matrices; bnumber of ECGs of normal subjects in the dataset; 
cnumber of ECGs of LVH subjects in the dataset; dnumber of ECGs 

of RBBB subjects in the dataset. 

 

2.2. ECG data 

Standard 12-lead ECG data of different sources was 

used in this research.  

The standard 12-lead ECG data of 229 normal and 232 

LVH subjects was extracted from body surface potential 

maps (BSPMs). Each BSPM contained 

electrocardiographic data of 120 BSPM leads.  A 

representative average QRS-T complex was calculated for 

each of the 120 BSPM leads.  Three of the 120 leads were 

recorded from electrodes placed on the right and left wrist 

and the left ankle (VR, VL and VF respectively).  

Electrodes situated at 81 anterior and 36 posterior locations 

were used to record 117 thoracic leads.  A comprehensive 

description of the recording procedure can be found in [8]. 

A Laplacian 3D interpolation procedure [9] was applied to 

the 117 thoracic BSPM leads.  This was performed to 

obtain body surface potentials at the locations of the 352 

Dalhousie torso [10] nodes.  Body surface potentials from 

electrode locations that were not a direct subset of the 352 

Dalhousie torso nodes were obtained using linear 

interpolation [11]. Average QRS-T complexes of the 

standard 12-lead ECG were extracted from the interpolated 

BSPM data. More precisely, body surface potentials on the 

right wrist, the left wrist, the left ankle and from the 

location of the six precordial electrodes were used for the 

determination of the standard 12-lead ECG.  

The standard 12-lead ECG data of 250 subjects with 

RBBB was assembled using the data in [12] and [13].  

First, the annotations provided in [12] were used to 

identify 10 second 12-lead ECGs from different subjects 

with complete and incomplete RBBB.  Second, average 

beats that were created using the Glasgow ECG program 

were obtained from [13]. Third, QRS-T complexes of the 

average beats where manually annotated and subsequently 

isolated. 

 

2.3. Target and basis lead configuration 

One established application area of LELTs are reduced 

lead systems. A reduced lead system that has been 

extensively studied [6] and has also been adopted into 

clinical practice [7] estimates the target leads V1, V3, V4 

and V6 by applying a LELT matrix to the basis leads I, II, 

V2 and V5 of the standard 12-lead ECG. Given that this 

reduced lead system is a well-known application area of 

LELT matrices, we have chosen to assess the influence of 

the training set composition on the estimation performance 

of LELT matrices based on this basis and target lead 

configuration. 

 

2.4. Development of the LELT matrices 

The different instances of the training sets were used to 

generate 200 different LELT matrices for each training set 

composition. Individual LELT matrices were developed 

using the multivariate linear regression approach in (1). 
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Where [∙]𝑻  and [∙]−𝟏denote the transpose and the 

inverse of a matrix respectively, 𝑨 
 

𝒎
 𝒊  refers to a 4 × 4 

matrix of transformation coefficients that allows for the 

transformation of the basis leads into the target leads,  

𝑚 ∈ {𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝑅𝑙𝑣ℎ, 𝑇𝑅𝑟𝑏𝑏𝑏, 𝑇𝑅𝑚𝑖𝑥} denotes the 

composition of the training set, 𝑛 refers to the number of 

sample values of the 171 QRS-T complexes in each lead 

of the training set, 𝑖 ∈ {1, … ,200} denotes the instance of 

the training set that was used for the development of 𝑨 
 

𝒎
 𝒊 , 

𝑻𝑳𝒎
𝒊 

  refers to a 𝑛 × 4 matrix that contains 𝑛 sample values 

of the target leads and 𝑩𝑳𝒎
 𝒊

  refers to a 𝑛 × 4 matrix that 

contains 𝑛 sample values of the basis leads. 

 

2.5. Derivation of the target leads 

Each 𝑨  𝒎
 𝒊  matrix was used to derive the target leads of 

three test sets. Each of these test sets was assembled in 

accordance to one of the test set compositions 𝑘 ∈
{𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ, 𝑇𝐸𝑟𝑏𝑏𝑏} detailed in Table 1. The target 

lead derivation was performed using the approach in (2). 

𝒅𝑻𝑳𝒌𝒎
 𝒊 = 𝑩𝑳𝒌

𝒊 ∙ 𝑨𝒎
𝒊 . (2) 

Where 𝑨𝒎
𝒊 , 𝑚 and 𝑖 are as defined in (1), 𝑩𝑳𝒎

 𝒊
  is a 𝑛 × 4 

matrix that contains the n sample values of the QRS-T 



complexes from the basis leads of one subject in the test 

dataset and 𝒅𝑻𝑳𝒌𝒎
 𝒊  is 𝑛 × 4 matrix that contains the n sample 

values of the QRS-T complexes of the derived target leads. 

 

2.6. Performance assessment 

The influence of the training set composition on the 

estimation performance of the LELTs under investigation was 

assessed as detailed subsequently.  

First, root mean square error (RMSE) values were 

calculated between the QRS-T complexes of the recorded and 

the derived target leads.  

Second, the population RMSE and the population 

subject to subject variability were determined for each 𝑨  𝒎
 𝒊  

using test data of the corresponding test set instance 𝑖. The 

population RMSE and population SSV were defined as the 

mean and the standard deviation of the RMSE values 

respectively. Values for the population RMSE and for the 

population SSV were determined over the 55 RMSE 

values per target lead and test set of each instance 𝑖. The 

outcome of this assessment were multiple 𝑷𝑹𝑴𝑺𝑬𝒌𝒎
     and 

𝑷𝑺𝑺𝑽𝒌𝒎
     matrices with 𝑚 ∈ {𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝑅𝑙𝑣ℎ, 𝑇𝑅𝑟𝑏𝑏𝑏,
𝑇𝑅𝑚𝑖𝑥} and 𝑘 ∈ {𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ, 𝑇𝐸𝑟𝑏𝑏𝑏}. Where 

𝑷𝑹𝑴𝑺𝑬𝒌𝒎
     and 𝑷𝑺𝑺𝑽𝒌𝒎

     are 200x4 matrices that contain 

the values of the population RMSE and the population SSV 

of the four target leads for each of the 200 instances 𝑖 
respectively.  

Third, the estimation performance associated with a 

training set composition 𝑚 was assessed for the different 

test set compositions 𝑘.  The estimation performance was 

quantified as the mean population RMSE ( 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎

    ) 

and the mean population SSV ( 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎

    ).  Where 

𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎

     and 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎

     are 1x4 vectors that were 

computed by calculating the mean over the 200 rows of the 

corresponding 𝑷𝑹𝑴𝑺𝑬𝒌𝒎
     and 𝑷𝑺𝑺𝑽𝒌𝒎

     matrices. 

Forth, the mean (95% confidence interval) of  

the differences 𝑷𝑹𝑴𝑺𝑬𝒌𝒎
    - 𝑷𝑹𝑴𝑺𝑬𝒌𝒎𝒊𝒙

     and  

𝑷𝑺𝑺𝑽𝒌𝒎
    - 𝑷𝑺𝑺𝑽𝒌𝒎𝒊𝒙

     was calculated for all combinations 

(𝑚, 𝑘) = {(𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝐸𝑛𝑜𝑟𝑚), (𝑇𝑅𝑙𝑣ℎ, 𝑇𝐸𝑙𝑣ℎ),
(𝑇𝑅𝑟𝑏𝑏𝑏, 𝑇𝐸𝑟𝑏𝑏𝑏)} in which 𝑚 and 𝑘 belong to the same 

diagnostic class. This was performed across the 200 

differences associated with each target lead. 

Fifth, the statistical significance of the differences in 

the mean population values 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎

    − 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎𝒊𝒙

     

and 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎

    − 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎𝒊𝒙

     was assessed for all 𝑚 ∈
{𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝑅𝑙𝑣ℎ, 𝑇𝑅𝑟𝑏𝑏𝑏} and 𝑘 ∈ {𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ,
𝑇𝐸𝑟𝑏𝑏𝑏} using a two-tailed paired t-test (alpha level of 

significance .05).   

 

3. Results 

A summary of the findings from our analysis is provided 

in Table 2 and Table 3 for target leads V1 and V3 

respectively. The findings for target leads V4 and V6 were 

similar to what can be observed in Table 2 and Table 3 and 

are omitted for brevity.

Table 2. Estimation performance [mean population RMSE; 

mean population SSV] associated with target lead V1 for the 

different train and test set compositions under investigation. 

Test  
Train 

TRnorm TRlvh TRrbbb TRmix differencea 

TEnorm  
[102.5*; [115.3*; [132.1*; [109.1; 6.5 [6.1; 7.0] 

45.4*] 51.7*] 56.7*] 46.0] 0.7 [0.3; 1.0] 

TElvh  
[111.1*; [103.1*; [136.1*; [106.9; 3.8 [3.3; 4.2] 

91.9*] 81.1*] 85.9*] 82.5] 1.4 [0.8; 2.1] 

TErbbb  
[120.4*; [117.2;* [103.6*; [109.8; 6.2 [5.6; 6.8] 

74.6*] 72.5*] 56.6*] 67.9] 11.3 [10.8; 11.8] 

amean (95% confidence interval) of the differences 𝑷𝑹𝑴𝑺𝑬𝒌𝒎
    -

𝑷𝑹𝑴𝑺𝑬𝒌𝒎𝒊𝒙
     and 𝑷𝑺𝑺𝑽𝒌𝒎

    - 𝑷𝑺𝑺𝑽𝒌𝒎𝒊𝒙
     for (𝑚, 𝑘) =

{(𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝐸𝑛𝑜𝑟𝑚), (𝑇𝑅𝑙𝑣ℎ, 𝑇𝐸𝑙𝑣ℎ), (𝑇𝑅𝑟𝑏𝑏𝑏, 𝑇𝐸𝑟𝑏𝑏𝑏)}. 

Notes. All values are in µV. Asterisks indicate statistical 

significance of the differences 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎

    − 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎𝒊𝒙

     and 

𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎

    − 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎𝒊𝒙

     for 𝑚 ∈ {𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝑅𝑙𝑣ℎ, 𝑇𝑅𝑟𝑏𝑏𝑏} and 

𝑘 ∈ {𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ, 𝑇𝐸𝑟𝑏𝑏𝑏} at the ≤ 0.05 level.  

Table 3. Estimation performance [mean population RMSE; 

mean population SSV] associated with target lead V3 for the 

different train and test set compositions under investigation. 

Test  
Train 

TRnorm TRlvh TRrbbb TRmix differencea 

TEnorm  
[104.4*; [171.1*; [146.4*; [128.0; 23.6 [22.2; 25.0] 

61.8*] 85.1*] 78.3*] 69.5] 7.7 [6.7; 8.8] 

TElvh  
[183.0*; [144.3*; [150.6*; [153.8; 9.5 [8.5; 10.6] 

174.1*] 108.6*] 107.2*] 121.3] 12.6 [10.7; 14.5] 

TErbbb  
[125.7*; [120.6;* [117.7*; [118.1; 0.4 [0.1; 0.7] 

82.6*] 72.2*] 73.6*] 74.5] 0.9 [0.5; 1.3] 

amean (95% confidence interval) of the differences 𝑷𝑹𝑴𝑺𝑬𝒌𝒎
    -

𝑷𝑹𝑴𝑺𝑬𝒌𝒎𝒊𝒙
     and 𝑷𝑺𝑺𝑽𝒌𝒎

    - 𝑷𝑺𝑺𝑽𝒌𝒎𝒊𝒙
     for (𝑚, 𝑘) =

{(𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝐸𝑛𝑜𝑟𝑚), (𝑇𝑅𝑙𝑣ℎ, 𝑇𝐸𝑙𝑣ℎ), (𝑇𝑅𝑟𝑏𝑏𝑏, 𝑇𝐸𝑟𝑏𝑏𝑏)}. 

Notes. All values are in µV. Asterisks indicate statistical 

significance of the differences 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎

    − 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎𝒊𝒙

     and 

𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎

    − 𝑷𝑺𝑺𝑽̅̅ ̅̅ ̅̅ ̅̅
𝒌𝒎𝒊𝒙

     for 𝑚 ∈ {𝑇𝑅𝑛𝑜𝑟𝑚, 𝑇𝑅𝑙𝑣ℎ, 𝑇𝑅𝑟𝑏𝑏𝑏} and 

𝑘 ∈ {𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ, 𝑇𝐸𝑟𝑏𝑏𝑏} at the ≤ 0.05 level.  

 

4. Discussion 

The findings in Table 2 and Table 3 show lowest 

𝑃𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values (highest estimation performance) when the 

LELT matrices were developed and tested on ECGs 

belonging to the same diagnostic class. This suggests 

suggest that the estimation performance of the LELTs 

under investigation can be optimized for ECGs that belong 

to one of the assessed diagnostic classes.  

However, from the findings in Table 2 and Table 3 it 

can be seen that the estimation performance (𝑃𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

𝑃𝑆𝑆𝑉̅̅ ̅̅ ̅̅ ̅) of LELT matrices that are trained on only one of 

the assessed diagnostic classes does decrease notably when 

such a matrix is applied to ECGs that belong to a different 



diagnostic class.  Considering that, in a clinical setting, 

ECGs belonging to different diagnostic classes will be 

applied to LELT matrices it is evident that the practical 

utility of selectively trained LELT matrices is limited. 

Interestingly, the findings in Table 2 and Table 3 show 

that the utilization of the balanced training set composition 

𝑚 = 𝑇𝑅𝑚𝑖𝑥 does lead to LELT matrices that have good 

levels of estimation performance across the different 

assessed diagnostic classes.  More precisely, the estimation 

performance of such LELT matrices was found to be close 

to the performance achieved by LELT matrices that were 

designed for and used on a specific diagnostic class. 

The literature typically reports the estimation 

performance of LELT matrices over test sets containing 

ECGs that belong to multiple diagnostic classes.  However, 

the findings in Table 3 show differences in the estimation 

performance across different diagnostic classes.  Such as 

for example across the 𝑷𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒌𝒎𝒊𝒙

     values for 𝑘 ∈
{𝑇𝐸𝑛𝑜𝑟𝑚, 𝑇𝐸𝑙𝑣ℎ, 𝑇𝐸𝑟𝑏𝑏𝑏}.  The composition of the utilized 

test set does therefore influence the observed estimation 

performance.  A consequence of this is that a meaningful 

comparison of RMSE-based estimation performance 

values reported in the literature is only possible if they 

were obtained from similarly composed test sets. 

This research has assessed the influence of the training 

set composition for the estimation performance of LELT 

matrices based on a particular configuration of target and 

basis leads.  However, we speculate that similar findings 

can be obtained for LELT matrices based on other lead 

configurations. 

A limitation of this research is that it has only assessed 

the influence of the training set composition on the 

waveform reconstruction error (RMSE between derived 

and recorded target leads).  The extent to which the training 

set composition does influence diagnostic interpretation of 

reconstructed ECGs has not been assessed. 

 

5. Conclusion 

The composition of the training set was found to have 

an influence on the estimation performance of the LELTs 

under investigation.  Our findings indicate that unbalanced 

training sets can lead to biased LELT matrices.  The 

estimation performance of such biased LELT matrices was 

found to vary notably across different diagnostic classes. 

This variability in the estimation performance may not be 

tolerable in clinical settings where LELT matrices will be 

applied to ECGs belonging to different diagnostic classes.  

However, balanced training sets were found to produce 

LELT matrices that performed well over different 

diagnostic classes.  We recommend the utilization of 

balanced training sets, that reflect the diagnostic classes of 

the target population, for the development of LELT 

matrices.
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