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Abstract

Fetal arrhythmias occur in 1-2% of pregnancies and in-
volve irregular fetal heart rhythms, typically outside the
100-200 bpm reference range. This condition can be diag-
nosed as benign in most cases due to its subsequent nat-
ural regularization, but 10% of the registered cases indi-
cate that the presence of irregularities in the fetal heart
rhythm can trigger morbidity, fetal hydrops or even immi-
nent death of the fetus. In this context, early and precise
diagnosis is crucial for addressing this condition and re-
ducing fetal deaths. That is why, a deep learning model
is proposed based on a classifying neural network trained
with an ECG database of 6 channels (fetal and maternal)
accompanied by an intelligent arrangement of clustering
techniques, analysis by permutation entropy and data aug-
mentation based on genetic algorithms. This set of tech-
niques aims to form an effective system for the rapid di-
agnosis of heart rhythm irregularities present in fetuses,
ensuring an overall accuracy greater than 92% in fetal ar-
rhythmia risk stratification.

1. Introduction

Fetal heart defect is one of the most common birth de-
fects that may be undetectable in seemingly healthy ba-
bies for many years after birth or be so severe that they
pose an immediate threat to the infant’s life [1, 2]. Fetal
cardiac arrhythmias (ARRs) are characterized by any fe-
tal cardiac rhythm that falls outside the reference range of
100 to 200 beats per minute (bpm), whether it’s irregular or
regular [4]. Approximately 1% of fetuses are found to have
RRs, with around 10% of these RRs having the potential
to cause morbidity [5]. While the majority of fetal ARRs
are harmless, a subset of them can result in fetal hydrops
and ultimately lead to fetal mortality [6]. This implies that
as many as 1 in every 100 fetuses may require close mon-
itoring of their ARRs and, if necessary, in utero treatment
with antiarrhythmic therapy.

In this way, early diagnosis is important for the treat-
ment of the reported condition. While existing studies uti-
lize ECG signal analysis and neural networks for detect-
ing and categorizing cases [7–9], the paramount goal re-
mains to enhance accuracy, speed, and efficiency to dimin-
ish the annual incidence of fetal deaths attributed to this
condition. Consequently, this research introduces a deep
learning model that employs a classifier neural network
trained on ECG data preprocessed with permutation en-
tropy.Since the latter has demonstrated great efficiency for
the treatment of physiological data and specifically ECG.
It also incorporates the strategic application of clustering
and data augmentation techniques guided by genetic algo-
rithms. This holistic approach is designed to ensure accu-
rate classification of fetal arrhythmia presence.

2. Database

The considered database was extracted from Physionet
[10] and is titled Non-Invasive Fetal ECG Arrhythmia
Database (NIFEAD). It comprises a set of 25 records, in-
cluding 11 arrhythmia records and 14 normal records, with
a total of 6 recording channels: one from the maternal tho-
rax and 5 from abdominal channels. These records have
a range limitation of 5 mV and a recording frequency of
1000 Hz. The duration of each record varies from 7 to
32 minutes, from which 1 minute was selected for each
channel. This minute was further divided into segments of
2 seconds in duration and subsequently organized into 11
arrays (for arrhythmia records) and 14 arrays (for normal
rhythm records), each with dimensions of 6x30x(2000).

3. Method

It is well-known that during the recording of ECG sig-
nals, data with noise can be acquired, which could signifi-
cantly impact the performance of optimization algorithms
included in classification models. Therefore, a two-stage
filtering approach was considered. In the first stage, the



Approximate Entropy (ApEn) [12] parameter was calcu-
lated for each 30x2000 matrix corresponding to the mater-
nal channel of each record.

ϕm(r) =
1

n

n∑
i=1

log(Cm
i (r)) (1)

ApEn(m, r,N)(u) = ϕm(r)− ϕm+1(r) (2)

The result was then comparatively filtered with a reference
ApEn value corresponding to white noise (not exceeding
2), replacing values above the threshold through polyno-
mial interpolation. The second stage involved the applica-
tion of the Normalized Least-Mean-Square (NLMS) adap-
tive filter, using the maternal record as the reference signal
and extracting data from the 5 abdominal channels.

It is evident that the obtained arrays can be analyzed using
a wide range of methods for time series, and it is possible
to describe their characteristics through statistics aimed at
measuring their regularity and complexity in terms of ex-
isting patterns within them. Hence, the use of Permutation
Entropy (PE) was considered, which was defined by Band
and Pompe. [11].

H(n) = −
∑

p(π) log p(π) (3)

The corresponding PE value was calculated for each 2-
second segment in each of the 5x30x2000 arrays, resulting
in 5x30 matrices for each of the records. The obtained ma-
trices were transformed into vectors of dimension 1x150
and labeled according to their condition (”Control” and
”Arrhythmia”). Both established groups were analyzed us-
ing the Mann-Whitney-Wilcoxon test to verify and deter-
mine the existence of significant differences between them,
successfully identifying the 2-second segments whose het-
erogeneity would contribute to the correct performance of
the classification algorithm. The aforementioned process
allowed for the reduction of the arrays to vectors of di-
mension 1x111.

It was decided that the database could be expanded through
a data augmentation procedure, driven by an unsupervised
learning model for classification, coupled with the appli-
cation of genetic algorithms for data generation. The 25
records were divided into 2 groups, with 13 of them (7 la-
beled as ”Control” and 6 as ”Arrhythmia”) used for data
augmentation processing, while the remaining 12 were re-
served for the subsequent evaluation of the neural network
for classification. Techniques such as K-means clustering
were leveraged to partition the vector space corresponding
to the 1x111 arrays into the well-known Voronoi cells, es-
tablishing the number of clusters at k=2. Additionally, the
’elkan’ optimization algorithm, which utilizes the trian-
gular inequality and has demonstrated good performance

with a small number of clusters, was employed.

The model did not aim to be particularly accurate since its
primary function was related to computing centroids that
best characterized the data clustering. The accuracy when
altering the initialization seed of the centroids was approx-
imately 85%, with the maximum Euclidean distance cor-
responding to each group not exceeding the value of 2.9.
The values of 111 EP (which we referred to as tokens) for
the 13 records laid the foundation for the genetic algorithm
based on the classical stages:

Figure 1. Genetic algorithm: Initial population = 150,
mutation rate = 0.02, maximum generations = 150.

The algorithm in question had a maximum number of
generations set to 150 and considered a fitness target value
greater than or equal to 4 to ensure the production of vec-
tors close to the vicinity of each centroid without compro-
mising their generality.

The proposed procedure succeeded in expanding the train-
ing database, resulting in up to 56 instances labeled as
’Arrhythmia’ and 102 as ’Control.’ The artificial neural
network was implemented with a sequential model con-
sisting of 4 stacked layers (with a total of 2582 trainable
parameters), with a ’Softmax’ output function that allows
expressing the result as a probability distribution. Conse-
quently, the artificial neural network considered a matrix
of dimension 158x111 as the training set and a 1x158 vec-
tor corresponding to the input values, which were encoded
using One-Hot-Encoding. Adaptive Moment Estimation
was the optimization algorithm considered, and EarlyStop-
ping was used as the criterion to prevent overfitting. The
supervised learning model was evaluated with a set of 12
records, which were excluded from the Data Augmenta-



tion process, resulting in a 50:50 training-evaluation ratio.

4. Results

In Figure 2, the progression of the loss function is de-
picted, representing the error incurred by the densely con-
nected neural network at the conclusion of each epoch.
The figure illustrates a favorable trend where both the
training and validation curves exhibit a consistent and
gradual convergence towards zero error. Remarkably,
the neural network’s classification error for patients ap-
proaches near-zero levels shortly before the initial 100
epochs and continues to decrease gradually in subsequent
epochs. Notably, the graph does not display any indica-
tions of overfitting or underfitting behavior in the model.

Figure 2. Evolution of the Loss function through the
epochs

Figure 3 illustrates the progression of categorical pre-
cision across epochs. This metric reflects the proportion
of subjects accurately classified relative to the total count,
with values approaching one indicating a more proficient
network classification. The figure demonstrates that both
curves closely mirror each other, maintaining a consistent
alignment throughout. Moreover, both curves rapidly con-
verge toward values approaching one within the initial 100
epochs, and this high level of precision persists in subse-
quent epochs.

Figure 4 presents the confusion matrix of the model, of-
fering crucial insights into the classification performance
of the densely connected neural network. Within this ma-
trix, we find counts for true positives, true negatives, false
positives, and false negatives, accompanied by their re-
spective rates. These metrics serve as the basis for calcu-
lating key performance indicators for the model, including
accuracy, precision, recall, and the F-score.

Based on the observed values, the model achieves an over-

Figure 3. Evolution of the Categorical Accuracy through
the epochs

all accuracy of 92%. For the classification of control pa-
tients and those with arrhythmia, the precision rates are
83% and 100%, respectively. Additionally, the recall rates
are 100% for control patients and 86% for arrhythmia pa-
tients, while the F1-scores stand at 91% and 92% for con-
trol and arrhythmia classifications, respectively.

Figure 4. Confusion matrix

An ROC curve provides a visual representation of the
classification performance achieved by the densely con-
nected neural network. In this curve, the y-axis repre-
sents the true positive rate, known as ”sensitivity,” while
the x-axis corresponds to the false positive rate, referred
to as ”1-specificity.” The ”ideal” point on this graph is one
where both specificity and sensitivity values approach 1.
Therefore, the closer the points are to the upper-left corner,
the better the classification performance. In other words, a
larger area under the curve (AUC) signifies superior clas-



sification accuracy.

Figure 5 depicts the ROC curve for this specific classifi-
cation task. Here, it is evident that the AUC value is very
close to 1, precisely at 0.929. This serves as compelling
evidence of the network’s effective classification perfor-
mance.

Figure 5. ROC curve

5. Discussion and conclusions

The two-stage filter proposed in this study was con-
ceived with the objective of enhancing ECG records to
facilitate and optimize the acquisition of Permutation En-
tropy (EP) values corresponding to each record, here re-
ferred to as ’tokens.’ This enhancement manifested in the
heterogeneity observed within the ’Control’ and ’Arrhyth-
mia’ labeled groups, as the Mann-Whitney-Wilcoxon test
enabled the preservation of a substantial number of tokens.
In contrast to other works addressing the treatment of ECG
signals for early diagnosis of fetal arrhythmia, this study
advocated the employment of Permutation Entropy as the
sole value or feature that the neural network should discern
for the classification task. However, it is not asserted that
the proposed two-stage filter is exclusively suitable for EP;
rather, it could also demonstrate strong performance when
applied to other feature sets tailored to the problem.

The utilization of clustering techniques in conjunction with
genetic algorithms demonstrated remarkable efficiency in
data augmentation tasks, facilitating the generation of vec-
tors that ensured similar characteristics, primarily deter-
mined by their distribution in the vector space. This was
achieved without compromising the generality of these
samples. The aforementioned findings were substantiated
by the performance exhibited by the artificial neural net-
work, achieving an overall accuracy of 92% and precision

values of 83% and 100% for the classification of the ’Con-
trol’ and ’Arrhythmia’ groups, respectively. These results
suggest that the implemented data augmentation system
maintains heterogeneity even after the application of the
Mann-Whitney-Wilcoxon test.
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