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Abstract 

Many survivors of cardiac arrest subsequently end up 

in a coma state, and these patients will go onto achieve 

varying levels of neurological recovery, ranging from 

brain death to full recovery. Electroencephalogram 

(EEG) analysis can be used to predict the neurological 

outcome of a cardiac arrest patient, but the patterns are 

complex and human analysis is time-consuming. 

We trained a variational autoencoder to extract 

features from EEGs and used those features in a random 

forest classifier to predict neurological outcome after 

cardiac arrest. The resulting model was able to 

differentiate between good neurological outcome, defined 

as Cerebral Performance Category (CPC) of 1 or 2, 

versus poor neurological outcome, defined as CPC of 3-

5. The final model had a true positive rate of 0.257 and a 

false positive rate of 0.05. These results demonstrate that 

it is possible to use variational autoencoders to extract 

EEG features that are useful for downstream tasks. This 

opens the door to more interpretable models for EEG 

analysis in the future.  

This article was part of 'Predicting Neurological 

Recovery from Coma After Cardiac Arrest: The George 

B. Moody PhysioNet Challenge 2023'. 

 

 

1. Introduction 

Cardiac arrest is a condition with high morbidity and 

mortality, with the majority of survivors experiencing 

some degree of permanent brain damage [1]. Accurate 

prognoses can help families make informed decisions, but 

predicting the neurological outcome of any given patient 

can be challenging. Electroencephalograms (EEGs) 

record the activity at the cortex of the brain using scalp 

electrodes [2], and they have been used to make more 

informed predictions about the neurological prognosis of 

patients status-post cardiac arrest [3]. 

However, human analysis of EEGs is labor-intensive, 

time-consuming, and susceptible to errors. Therefore, 

machine learning can improve both the time to get a 

prognosis and the accuracy of that prognosis. For 

example, Zheng et al used a convolutional neural network 

with a long-short term memory to predict CPC after 

cardiac arrest with are under the receiver operating 

characteristics curve (AUC) of 0.91 [4]. However, 

existing machine learning methods lack interpretability, 

which hinders adoption in the clinical environment. 

One novel architecture that has been proposed for 

interpretable feature extraction is the variational 

autoencoder (VAE). Autoencoders compress multi-

dimensional data into a low-dimensional latent space. 

Unlike traditional autoencoders, VAEs enforce an 

additional constraint, namely that similar values of the 

latent variables should result in similar reconstructions. 

This tends to force models toward encoding disentangled 

latent variables that are often more easily interpretable 

[5]. 

This work was part of 'Predicting Neurological 

Recovery from Coma After Cardiac Arrest: The George 

B. Moody PhysioNet Challenge 2023' for the team 

“HeartsAndMinds” [6, 7]. 

 

2. Methods 

2.1. Database 

The I-CARE database includes data from 607 patients 

who were treated for cardiac arrest at 7 hospitals across 

the U.S. and Europe, as well as clinical variables 

including age, sex, location of arrest (in-hospital vs out-

of-hospital), type of cardiac rhythm at time of 

resuscitation (shockable vs non-shockable), targeted 

temperature management, and the CPC outcome [8]. 

 

2.2. Algorithm Training 

    We devised a variational autoencoder (VAE) to encode 

segments of the EEG strip into a compressed latent space. 

The input data for the VAE consisted of 1024-frame 

segments of the EEG, containing 1024 voltage 

measurements from each of 6 scalp electrodes. Although 

several recordings had 18 or more electrodes, for our 

algorithm, we selected the 6 electrodes that were present 

in all recordings in order to reduce imputation. Namely, 

these were F3, F4, P3, P4, T3, and T4. The I-CARE 

(International Cardiac Arrest REsearch consortium) 

database contains over 32,000 hours of EEG recordings 

[8], so to reduce the number of variables, we truncated the 

recordings, considering only the first 5 minutes of each 



hour-long recording. These 5 minutes of EEG data were 

split into 1024-frame-long segments and provided as 

input for the VAE. 

The code for the VAE was based on a GitHub 

repository by Subramanian [9], and the final code is 

publicly available at the  following URL 

(https://github.com/firejake308/cinc-2023). The structure 

of the encoder part of the VAE consisted of three one-

dimensional convolution layers, with the first having 128 

output channels, 256 for the second, and 512 for the third. 

Batch normalization was applied to each layer, and leaky 

rectified linear units (ReLU) were used as the activation 

function. The output of the convolutional layers was 

provided in parallel to two linear layers to produce two 

vectors of 400 variables each per batch, one representing 

the mean and one representing the standard deviation of 

each latent variable. A random number is then sampled 

from the normal distribution described by that mean and 

standard deviation, producing the value of the final latent 

variable. These values were then fed through a decoder to 

try to restore the original signal, where the structure of the 

decoder was a single linear layer, followed by three one-

dimensional transposed convolutional layers, each with 

batch normalization and leaky ReLU activation. The final 

layer of the decoder was a standard one-dimensional 

convolution layer (no transpose) with tanh activation to 

allow for output of negative voltages. 

Due to initially unstable training, a random shortcut 

term was added to simplify the prediction task during the 

initial batches of training, inspired by diffusion models 

[10]. Namely, at the time of decoding latent variables 

back to the original voltage signals, a copy of the initial 

input was fed through the encoder, skipping over the 

linear layers and the random sampling, and provided to 

the decoder to assist with reconstructing the initial 

voltages. However, each batch was assigned a probability 

of shuffling, and based on that probability, the values of 

the shortcut path would be randomly shuffled, have a 

noise added to them, or set to zero. The probabilities for 

randomizing samples for each batch were sampled from a 

uniform distribution ranging from zero to one, with no 

modifications throughout the training process. 

The VAE was then trained to compress the input data 

into a latent space of 400 variables, then recreate the 

initial EEG recording of 1024 frames and 6 electrodes, 

corresponding to compression down to 6.5% of the initial 

size. Due to practical considerations near the deadline, the 

VAE was only trained for 24 hours rather than training 

for the full 72 hours permitted by the Moody Challenge. 

The latent variables for all 1024-frame segments in the 

5-minute period were then averaged together to produce a 

single, average latent representation of the signal for each 

recording. These latent variables were then trended over 

several hours to produce the final EEG features for the 

classification model. Namely, the mean latents across all 

hours and the slope and y-intercept of the linear 

regression of the latent variables over time were all 

provided to the final classifier. 

The ultimate prediction of the CPC was made by a 

random forest model. The random forest model had 

access to the EEG features described in the previous 

paragraph, in addition to the patient’s age, sex, time 

between cardiac arrest and return of spontaneous 

circulation (ROSC), out-of-hospital cardiac arrest 

(OHCA) status, rhythm type, and target temperature, if 

targeted temperature management was used. 

 

2.3. Testing and Validation 

The model was trained on data from 607 patients and 

tested on a separate, hidden test set of patients. The 

metric reported by the official challenge was the true 

positive rate (TPR) when holding the false positive rate at 

0.05. This TPR was reported for models trained on 12 

hours, 24 hours, 48 hours, and 72 hours of EEG data per 

patient, but our model did not use the additional EEG 

recordings due to the self-imposed time limit. 

 

3. Results 

Table 1. Binary classifier performance metrics. 

 

 Train Validation Test 

TPR  0.921 0.403 0.257 

AUROC 0.989 0.707 0.698 

Accuracy  0.942 0.673 0.683 

TPR = true positive rate 

AUROC = area under the receiver operating 

characteristics curve 

 

The final challenge score achieved by the model was 

0.257 on the test set (Table 1), meaning that the random 

forest model using VAE latent variables was able to 

differentiate between CPC > 3 versus CPC < 3 with a true 

positive rate of 0.257 when the decision threshold was set 

to have a false positive rate of 0.05. On the hidden test 

set, the model also had an area under the receiver 

operating characteristics curve (AUROC) of 0.257. Our 

team was not officially ranked, but our 72-hour.test-set 

score fell between the teams ranked 32 and 33. 

The model had equal performance regardless of 

whether it was given 12, 24, 48, or 72 hours of EEG data. 

 

4. Discussion 

The final challenge score of 0.257 represented 

performance that was significantly better than chance 

alone, which would be 0.05. There was likely significant 

overfitting involved, since the AUROC decreased from 

0.989 on the training set to 0.707 on the validation set and 

0.698 on the test set. However, it should be noted that the 



VAE-based algorithm was unable to improve its 

performance when given 24, 48, or 72 hours of EEG 

recordings due to the limit on training time. Given that 

even this limited VAE learns generalizable features, it is 

possible that when exposed to more training data, the 

VAE may learn even more generalizable features to better 

encapsulate the data, or it may also be necessary to 

expand the latent space.  

In terms of interpretability, the addition of the random 

noise term made it difficult to interpret the significance of 

the latent variables. It is worth noting that in previous 

iterations without the random term, each latent variable 

represented a prototype recording, and the overall 

reconstruction was built by a weighted sum of these 

prototypes. However, after a random term was added to 

facilitate the training process, the random noise 

introduced additional confounding variables, and this 

interpretability was lost. An ideal scenario would likely 

find a way to facilitate training without the random term 

in order to preserve interpretability. 

 

Acknowledgments 

No conflicts of interest to disclose. 

 

References 

[1] Young GB. Neurologic Prognosis after Cardiac Arrest. N 

Engl J Med 2009; 361(6):605–11. 

[2] Constant I, Sabourdin N. The EEG signal: a window on the 

cortical brain activity: EEG in pediatric anesthesia. Pediatr 

Anesth 2012; 22(6):539–52. 

[3] Admiraal MM, Ramos LA, Delgado Olabarriaga S, et al. 

Quantitative analysis of EEG reactivity for neurological 

prognostication after cardiac arrest. Clin Neurophysiol 

2021; 132(9):2240–47. 

[4] Zheng W-L, Amorim E, Jing J, et al. Predicting 

neurological outcome in comatose patients after cardiac 

arrest with multiscale deep neural networks. Resuscitation 

2021; 169:86–94. 

[5] Higgins I, Matthey L, Pal A, et al. beta-VAE: Learning 

Basic Visual Concepts with a Constrained Variational 

Framework. International Conference on Learning 

Representations 2017. 2017. 

[6] Reyna MA*, Amorim E*, Sameni S, Weigle J, Elola A, 

Bahrami Rad A, Seyedi S, Kwon H, Zheng, WL and 

Ghassemi M, van Putten MJAM, Hofmeijer J, Gaspard N, 

Sivaraju A, Herman S, Lee JW, Westover MB**, Clifford 

GD**. Predicting Neurological Recovery from Coma 

After Cardiac Arrest: The George B. Moody PhysioNet 

Challenge 2023. Computing in Cardiology 2023; 50: 1-4. 

[7] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, 

Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, 

Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: 

Components of a new research resource for complex 

physiologic signals. Circulation; 101(23): e215-e220.  

[8] Amorim E, Zheng WL, Ghassemi MM, Aghaeeaval M, 

Kandhare P, Karukonda V, Lee JW, Herman ST, Adithya 

S, Gaspard N, Hofmeijer J, van Putten MJAM, Sameni R, 

Reyna MA, Clifford GD, Westover MB. The International 

Cardiac Arrest Research (I-CARE) Consortium 

Electroencephalography Database. Critical Care Medicine 

2023 (in press); doi:10.1097/CCM.0000000000006074. 

[9] Subramanian AK. PyTorch-VAE. GitHub repository 2020. 

GitHub 2020. 

[10] Ho J, Jain A, Abbeel P. Denoising Diffusion Probabilistic 

Models. 2020. arXiv 2020. 

 

 

Address for correspondence: 

 

Adel Hassan 

1 Baylor Plaza, Houston, TX 77030 

Adel.Hassan@bcm.edu 


