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Abstract 

Atrial fibrillation (AF) is a common cardiac arrhythmia 

with serious health implications. Passive monitoring using 

photoplethysmography (PPG) is desirable for long-term 

detection of AF. Deep neural networks (DNNs) show 

promise, but it requires massive training data with clean 

label, which is hard to obtain. To address the challenge, in 

this study, a large-scale dataset is created using PPG 

signals from hospital monitors, and each PPG signal is 

automatically annotated by concurrent alarms. However, 

the labels of collected PPG can be noisy because of the 

existence of false alarms. Then a novel loss function, 

cluster membership consistency (CMC) loss, is introduced 

to handle label noise caused by inaccurate PPG labels. 

The proposed approach shows superior performance in 

handling label noise and poor-quality signals. This novel 

approach is shown to be effective in further improving the 

model performance. It achieves superior or comparable 

results when evaluated against five different state of the art 

robust learning algorithms for noisy labels, while at the 

same time maintains computational efficiency advantage. 

 

1. Introduction 

Atrial fibrillation (AF) is a common irregular heart rhythm 

that can indicate serious health conditions [1]. Detecting 

AF in ambulatory settings is important for timely 

intervention. Photoplethysmography (PPG) is a suitable 

method for passive monitoring of AF due to its 

physiological basis and wide availability in wearable 

devices. However, existing AF detection algorithms using 

PPG often yield false positives, leading to unnecessary 

medical resource utilization. Deep neural networks 

(DNNs) show promise in accurate AF detection based on 

PPG [2], [3], but lack sufficient training data with well-

annotated labels and struggle with the presence of other 

arrhythmias [4]. 

To address these challenges, this study introduces two 

innovations. First, a large-scale dataset consisting of 

approximately 8 million PPG strips from 24,100 patients is 

created by leveraging PPG signals collected from hospital 

monitors with built-in arrhythmia detection algorithms. 

However, the labels generated by these algorithms are 

imperfect. Second, a novel approach is proposed to achieve 

robust learning in the presence of label noise caused by 

inaccurate PPG labels. Specifically, we introduce the 

cluster membership consistency (CMC) loss, as shown in 

Fig. 1. This loss ensures a natural cluster structure in the 

latent space of the autoencoder used for signal processing. 

The deep neural network, trained with the CMC loss and 

cross-entropy loss, demonstrates superior performance in 

handling label noise and poor-quality signals compared to 

baseline models. 

 

 

 

 

 

 

 

 

Figure 1. The workflow of CMC. First, cluster label is assigned to each 

sample by a pre-trained autoencoder. Then, the intra-cluster distance and 
inter-cluster distance of a single batch are computed based on these 

cluster labels. These distances are incorporated as additional loss terms, 

along with the conventional cross-entropy. 

 



The contributions of this study include 1) a new approach 

to generate large labeled datasets using the concurrent 

alarm data; 2) the introduction of the CMC loss for robust 

learning, and 3) the demonstration of the proposed 

approach's effectiveness in handling label noise and poor-

quality signals. This work provides valuable insights for 

PPG-based AF detection and has the potential for broader 

applications in deep learning. 

 

2. Methods 

2.1. Patient data 

A comprehensive collection of physiological signals, 

including Electrocardiography (ECG) and PPG, at an 

academic medical centre in California, including cardiac 

arrhythmia alarms, and associated electronic health records 

(EHR) was conducted on a population of over 24,100 

patients. Among these patients, a total of 2,834 individuals 

in the ICU were identified to have AF alarms from the 

bedside patient monitor. Moreover, out of these 2,834 

patients, 1,650 had a well-documented ICD-10 code 

specifically indicating the presence of AF (coded as I48).  

 

In accordance with our research methodology, we use 30 

seconds for each photoplethysmography (PPG) signal, 

specifically centered at the start time of an AF alarm. This 

data acquisition approach is visually represented in Fig. 2. 

Similarly, for premature ventricular contraction (PVC) 

samples, we follow a similar procedure, with the exception 

that PVC alarms accompanied by AF alarms within a 30-

second window from their onset are excluded from our 

dataset. Given that there is no explicit alarm for normal 

sinus rhythm (NSR), we define the existence of one 'NSR 

alarm’ when the time interval between two consecutive 

alarms exceeds 30 seconds. 

 

 

 

 

Figure 2. The illustration of the algorithmic labeling process for three 

classes. Each time an alarm is triggered, we store 15 seconds of data both 

before and after the trigger. Note the presence of normal PPG signals 

(labeled NSR) as well as the presence of many different alarms (VFIB, 
VT, PVC), and motion artifacts (labeled “artifacts”). On the right, we 

show that when an AF alarm is triggered within 30 seconds of a PVC 

alarm, we exclude the PVC alarm, because PVC and AF are difficult to 
tell apart. 
 

Employing this specific criterion, we obtain a total of 

4,070,350 30-second PPG segments originating from 

2,985 patients who experienced AF. In contrast, for non-

AF samples, we randomly select 2,436,460 NSR samples 

and 2,157,599 PVC samples from a pool of 24,100 

patients, some of whom also exhibited AF alarms. 

Consequently, the sizes of the AF and non-AF sample sets 

are approximately balanced. 

 

We selected the Stanford dataset as the test set, which is 

openly accessible, has been detailed in the publication 

referenced as [5]. In this study, the authors enlisted a total 

of 107 patients who had been clinically diagnosed with 

atrial fibrillation (AF), with a mean age of 68. 

Additionally, an additional 15 patients, with a mean age of 

67, presenting paroxysmal AF, were also included in the 

dataset. Furthermore, data obtained from 41 healthy 

participants, undergoing exercise stress tests, with a mean 

age of 56, were incorporated as well. 

 

2.3. Cluster membership consistency 

Our proposed algorithm is founded on the principle that 

data sharing similar latent features should exhibit similar 

labels. Essentially, we assume that signals closely situated 

on the manifold of realistic signals possess smoothness 

properties. To achieve this, we utilize an autoencoder to 

map the manifold of real signals to a space where distances 

along the manifold can be measured as Euclidean 

distances. 

 

Initially, we employ an unsupervised learning approach to 

cluster the training samples into a finite number of clusters. 

This unsupervised approach exclusively utilizes the PPG 

signals and disregards the labels, ensuring immunity to any 

label noise. The autoencoder compresses the signals, 

encoding the information into a space where Euclidean 

distances become meaningful measurements along the 

manifold of realistic signals. 

 

Subsequently, during the supervised learning phase, we 

utilize the learned cluster membership to encourage small 

distances between points within the same cluster and large 

distances between points in different clusters. To achieve 

this, we augment the cross-entropy loss with two terms that 

constitute the cluster membership consistency loss.: 
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where the first term is the sum of distances among intra-

cluster samples and the second term is the sum of distances 

among inter-cluster samples. Distances are computed both 

in a latent space being learned with defined by a function 

𝑭 that is parameterized by 𝜃. This framework is flexible 

and yet has a small distance is easy to compute for any 

neural architecture and requires little extra computational 

cost for each training epoch.  

 



The final loss is a weighted combination of  the cross-

entropy loss and two new CMC loss terms, 

 
𝐿 = 𝐿𝐶𝐸 + 𝜆1 𝐿𝑖𝑛𝑡𝑟𝑎 + 𝜆2 𝐿𝑖𝑛𝑡𝑒𝑟                             (3) 

are the hyperparameters selected by grid search through 

cross-validation.  

 

3. Results 

3.1. AF detection performance 

As the key investigation in this study, we assess the 

efficacy of the proposed CMC loss against co-teaching [6], 

Early-Learning Regularization (ELR) [7], DivideMix [8], 

Iterative Noisy Cross-Validation (INCV) [9], and Sparse 

Over-Parameterization (SOP) [10], which are top runners 

in the 1st Learning and Mining with Noisy Labels 

Challenge at http://competition.noisylabels.com/. We tested each 

method on PPG data with both high and poor-quality 

subgroups, in addition to the entire dataset. We used 

AUROC (Area under the ROC Curve) as the metric for AF 

evaluation. 

 

Table 1. Performance comparison between the proposed method with    

               state-of-the-art algorithms on the test set. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the AF detection on the Stanford 

dataset is summarized in table 1, comparing seven baseline 

algorithms with the proposed CMC method using 2 and 6 

clusters. The comparison across the two signal quality 

subgroups shows consistently better performance on the 

good quality subgroup compared to the bad quality 

subgroup. With all three groups, CMC produces either the 

best or the second-best performance among testing 

scenarios. Notably, CMC-6 demonstrates a strong 

performance on good quality signals and ranks second to 

DivideMix on bad quality signals. 

 

3.2. Explore CMC latent space 

We also explore the distribution of latent space learnt with 

CMC loss. We randomly selected 4 samples with correct 

labels, one sample each from each category - good quality 

AF, good quality Non-AF, bad quality AF and bad quality 

Non-AF, and generated their top-100 nearest neighbors 

from the training data based on the representations learnt 

from last convolutional layer. Then we manually annotate 

the selected neighbors to see the true label rate, as shown 

in Fig. 3. To obtain a big picture of the data distribution, 

we randomly selected 20,000 samples from the training 

data (grey dots), and 2,000 samples (yellow-AF, purple-

Non-AF) from a clean-labelled dataset from our previous 

study. 

 

As illustrated in Fig.3, we can observe that the true label 

rate for the selected 4 samples in CMC loss are all higher 

than in the CE loss, which shows that CMC will help gather 

the samples with same label together. Also, the true label 

rates of the two bad quality signals are lower than good 

quality signals. Moreover, for the selected bad quality 

Non-AF signal, CE is not able to separate it with the AF 

samples clearly, while CMC loss has push it far away from 

the AF samples cluster. 

a. latent space from CE              b. latent space from CMC 

 

Figure 3. The distribution of latent space for CE and CMC loss. The 

latent space are calculated based the representation learnt from last 

convolutional layer. 100 neighbors (from training data) of each sample 
signal are selected and manually annotated for AF/Non-AF. 
 

4. Discussion  

Our study utilized cardiac arrhythmia alarms generated by 

bedside patient monitors to create the largest dataset for 

training PPG-based AF detection models. This extensive 

dataset consists of over 8 million 30-second PPG segments 

obtained from more than 24,000 hospitalized patients. To 

optimize learning from this dataset despite the presence of 

noisy labels, we propose a novel approach. Initially, we 

employ unsupervised learning to cluster the training 

samples, using the resulting cluster membership 

information to regulate the latent representation of PPG. 

This innovative technique significantly improves model 

performance and achieves results that are superior or 

comparable to five state-of-the-art robust learning 

algorithms designed for noisy labels. Moreover, our 

approach maintains a computational efficiency advantage. 

Our experiments demonstrate the effectiveness of 

combining a large-scale auto-labeled dataset with our 

Methods whole 

dataset 

bad 

quality 

good 

quality 

CE 0.5853 0.5277 0.9051 

SCE 0.5859 0.5359 0.7429 

Co-teaching 0.5448 0.4626 0.8217 

INCV 0.6082 0.5472 0.9245 

DivideMix  0.7437  0.6983 0.9631 

ELR 0.503 0.4807 0.8266 

SOP 0.6633 0.5752 0.9614 

CMC-2 0.7277 0.6779 0.9614 

CMC-6 0.7416 0.6847 0.9724 



robust learning approach for PPG AF detection. The key 

finding of our study is that enforcing cluster membership 

consistency can mitigate the impact of label errors in real-

world datasets. Our method, alongside DivideMix, 

outperforms other algorithms, likely due to the 

incorporation of unsupervised information in both 

approaches. In our Cluster Membership Consistency 

(CMC) method, we derive cluster membership information 

through an unsupervised learning process before 

proceeding to supervised learning with noisy labels. 

DivideMix addresses the label noise issue as a semi-

supervised problem, dividing the training data into clean 

and noisy subsets and re-labeling the noisy subsets by 

leveraging consensus from two pre-trained networks. 

While ELR and SOP were top performers in a recent robust 

learning competition in computer vision, they exhibited 

inferior performance compared to our method and 

DivideMix in our study. This difference can be attributed 

to several factors. Firstly, ELR and SOP demonstrated 

superiority in experiments using simulated label errors, 

while our study incorporated real-world noise. 

Additionally, the scale of our dataset and model 

complexity may not satisfy the optimal conditions required 

for the SOP algorithm. Secondly, poor data quality may 

have influenced the results. Images in the datasets used in 

ELR and SOP studies likely possess a lower signal-to-

noise ratio compared to PPG signals. ELR relies on loss 

calculation during training to assess the early learning 

stage, which can be unreliable due to noise in the data 

itself, thereby affecting signal quality. Our results 

challenge the assumption that early stopping effectively 

prevents overfitting caused by label noise, particularly in 

the presence of poor data quality. Lastly, our utilization of 

an autoencoder as a preliminary step for clustering 

contributes to our success. The autoencoder learns a 

compressed representation that can be reconstructed to the 

original input, effectively eliminating certain signal 

artifacts during the recovery process. The learned 

representation in our study demonstrates resilience to poor 

signal quality to some extent, potentially explaining our 

superior performance on subsets with subpar data quality. 

5. Conclusion  

In this study, we utilized cardiac arrhythmia alarms from 

patient monitors to create the largest dataset for training 

PPG-based AF detection models. The dataset consists of 

over 8 million 30-second PPG segments from 24,000+ 

hospitalized patients. We also introduce a novel approach 

that improves learning from this dataset by employing 

unsupervised clustering and regularization. Our approach 

achieves superior results compared to robust learning 

algorithms for noisy labels while maintaining 

computational efficiency. This demonstrates the 

effectiveness of combining a large auto-labeled dataset 

with our proposed approach for PPG AF detection. 
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