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Abstract

Cryo-ablation is a common procedure used in hospi-
tals to eliminate certain arrhythmia, such as Atrial Fib-
rillation. Although this procedure is sufficiently proven, it
sometimes involves treatments in areas close to the phrenic
nerve with the subsequent risk of later damage to the afore-
mentioned nerve. To avoid this, clinical practice incor-
porates manual safety protocols during ablation. In this
work, we propose the development of an automated clas-
sifier that facilitates the clinical evaluation of possible
conduction disorders produced in the phrenic nerve. To
achieve this goal, polygraph signals extracted during the
ablation process of ten patients were used. Signal process-
ing, including pre-processing, noise filtering, and delin-
eation, was applied to every available situation and signal.
To unmask the residue of cellular muscle potential during
the phrenic nerve stimulation process, the results when the
sensor was placed on the phrenic nerve (activation cap-
ture) and when the sensor was displaced from the phrenic
nerve (no capture) were compared. A linear classifier was
applied to both situations to characterize muscle activity
resulting from nerve activation. The results confirmed that
it is possible to automatically classify the level of muscle
activity from the phrenic nerve with 100% accuracy in this
data set. The method proposed in this work constitutes
an automated protocol to evaluate the eventual deteriora-
tion of the phrenic nerve conduction due to ablation in the
vicinity, improving the existing protocol for clinical conve-
nience.

1. Introduction

Cryo-ablation is an advanced technique widely used in
hospitals to treat various cardiac arrhythmias, with atrial
fibrillation being one of the most common. This procedure
involves the application of extremely cold temperatures to
eliminate or interrupt the abnormal electrical signals that

cause the arrhythmia. Although cryo-ablation has proven
effective in treating these conditions, there is an inherent
risk of damaging nearby structures during the process. One
of the most prevalent instances of this potential occurrence
is the affection of the phrenic nerve. To measure the activ-
ity of the phrenic nerve, it is required to apply a stimulus
close to the muscle [1].

The phrenic nerve plays a crucial role in the respira-
tory system as it innervates the diaphragm, one of the main
muscles involved in respiratory function. Due to its prox-
imity to the areas where the cryo-ablation procedure is per-
formed, there is a possibility of the phrenic nerve being
affected during the procedure, potentially leading to di-
aphragmatic dysfunction and respiratory difficulties in pa-
tients. Currently, in clinical practice, manual safety proto-
cols are applied during cardiac ablation to prevent phrenic
nerve deterioration [2]. These protocols involve placing
the hand on the patient’s diaphragm and subjectively eval-
uating the phrenic nerve activity while simultaneously in-
ducing an electrical stimulation [3]. However, this manual
evaluation is subject to inter-individual variations and has
a certain degree of subjectivity.

Previous research has determined that the phrenic
nerve’s muscle activity can be quantified during the sec-
ond peak of the triggered stimulus [4]. The advancement
of signal processing techniques and machine learning have
proven to be of relevant interest when proposing automated
methods of detection and classification. In this paper, we
propose to develop an automated method to objectively
evaluate the conduction of the phrenic nerve throughout
the cryo-ablation procedure and thus prevent it from even-
tual deterioration.

2. Materials and Methods

This section summarizes the clinical and methodologi-
cal description of the data sets used in this study. We also
describe the preprocessing, conditioning, and characteri-



zation of the recorded signals for the subsequent analysis.
Finally, in this study is summarized the classification and
signal processing techniques applied.

2.1. Dataset

In this work, a total of ten cases registered during abla-
tion processes in cases of atrial fibrillation carried out at
the Virgen de la Arrixaca University Clinical Hospital in
Murcia, have been selected. The recording of these sig-
nals was carried out as follows. Polygraph signals related
to the electrocardiogram and specialized sensors strategi-
cally placed in areas near the phrenic nerve were recorded
to identify the stimulations induced during the procedure.
These sensors are commonly used during the standard
cryo-ablation procedure for phrenic nerve monitoring, fol-
lowing the clinical protocols established for this purpose.
The dataset incorporated in this study consists of 10 cases,
with the following demographics: 3 women and 7 men,
and ages between 55 and 72 years, with an average age of
66.5 years. This sample can be considered diverse in terms
of gender and age, according to the pathology identified.
These demographic characteristics reflect an older adult
population in which the cryo-ablation procedure was per-
formed to treat various heart conditions. Using this dataset
provides a solid basis for performing analyses and assess-
ments of phrenic nerve muscle activity during the proce-
dure. In particular, signals were recorded during phrenic
nerve stimulation in two different situations: with activa-
tion capture and without activation capture. In the activa-
tion capture situation, the sensor is placed in the muscle
to identify phrenic nerve activity. For the non-capture sit-
uation, the sensor was placed in areas not related to the
phrenic nerve, which allowed us to obtain electrocardio-
graphic recordings of reference signals, that is, not affected
by the phrenic nerve.

For each case incorporated in this study, multiple mea-
surements were recorded, applying various filters (50 Hz
and 250 Hz) and pulse intensities of phrenic nerve stim-
ulation. Additionally, to ensure the analysis was robust,
multiple repetitions of phrenic nerve stimulation (with and
without capture) were recorded for all cases and patients,
following the methodology used during the cryo-ablation
procedure.

2.2. Preprocessing

The necessary processing for this work has been carried
out in four phases: preprocessing, template construction,
characterization of templates, and classification.

In the preprocessing stage, while analyzing the surface
electrocardiogram signal, the main objective was to de-
tect and separate the nerve stimulation from the rest of the
PQRST complex. To achieve this, and due to the spiking
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Figure 1. Peak detection and template creation.

nature of the stimulation, a high-frequency filtering stage
was performed that allowed the stimulation to be located.
Subsequently, a correlation window of the original signal
was applied to identify spikes in the filtered signal [5].

2.3. Stimulation Template

Once the polygraph signals were pre-processed and fil-
tered, We applied a delineation process [5]. In this step, the
precise moments where the stimulation and consequent ac-
tivation of the phrenic nerve occurred were identified ac-
cording to the activation signals. After identifying these
moments, the templates of the induced stimulation were
obtained by consolidating the individual ones, obtained by
signal windowing and applying an event detector devel-
oped. As a result, statistically denoised stimulation tem-
plates were obtained for the subsequent automated and pre-
cise analysis in each derivation and case.

2.4. Characterization

As a third phase, and after obtaining the stimulation
templates for each of the leads and situations described
above, all of them were mathematically characterized, both
in amplitudes and duration and time-offsets, according to
clinical criteria. The muscle activity was then compared
throughout the multiple situations evaluated to detect the
effective activation of the phrenic nerve using evaluating
the differences between capture and non-capture.

2.5. Linear Classifier

Finally, it has been proposed the use of a linear clas-
sifier of vector support machines as a tool to categorize
the different options. Linear classifiers are a type of ma-



chine learning algorithm that aims to establish linear de-
cision boundaries for categorizing and distinguishing be-
tween different classes of data. A linear classifier divides
the feature space into two regions corresponding to each
class in a binary classification context where two classes
are to be discriminated. The optimum hyperplane that sep-
arates the data points of distinct classes is fitted to achieve
this separation. There are many benefits to using linear
classifiers. They are computationally efficient and can
scale well to large datasets. They can also be easily under-
stood because linear functions define the decision bound-
aries. This interoperability can show how the input fea-
tures and class labels relate to each other. The Support
Vector Machine (SVM) algorithm is a powerful supervised
learning method that is widely applied in a variety of clas-
sification applications. It is renowned for its robustness
and efficacy. The SVM method provides the framework
for the proposed linear classifier. The process of deter-
mining the ideal hyperplane involves identifying the sup-
port vectors, which are the data points closest to the deci-
sion boundary. These support vectors significantly impact
the orientation and position of the hyperplane, permitting
the linear classifier to develop higher accurate predictions.
The selection and positioning of these support vectors are
crucial as they help capture the essential characteristics and
patterns necessary for effective classification.

3. Experiments and Results

3.1. Stimulation template

Following the early tests, which utilized the TETRA
polygraph signal to effectively recreate the stimuli and the
generated impulses, it was argued that the synchronism of
the first peak and the linearity of the response to ampli-
tude modification encouraged the notion that the first peak
corresponded to the direct recording of the impulse itself
rather than muscular activity, defining it as an artifact. On
the other hand, the non-linearity of the response to the im-
pulse in the second peak of the stimulus, coupled with its
stable morphology in response to frequency changes, led
us to consider that this peak corresponded to the muscular
activity of the phrenic nerve, as several previous studies
had already defined [1][4].

3.2. Template Characterization

To contrast the amplitudes of captured versus uncap-
tured muscle activity, numerous experiments and measure-
ments were conducted in each scenario as the second peak
difference amplitude we show in Table 1. We observed
that the first and second peak amplitudes exhibited simi-
lar variations when capturing muscular activity. This con-
firmed that there is also a certain level of muscular activ-
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Figure 2. Comparison between capture and non-capture
electrograms in lead aVF (a) and lead I (b).

ity of the phrenic nerve in the first peak of the measured
stimulus. Additionally, by studying the pattern obtained in
different cases for the non-captured nerve situation, we can
observe that the second peak is not completely eliminated,
confirming the presence of the first stimulus artifact in this
maximum as well as we can observe in Figure 2 (a) and
(b).

After confirming these findings, we conducted the study
for the entire stimulus, encompassing both peaks and per-
formed temporal and amplitude measurements for both.
Once the experimental strategy was established, an anal-
ysis of the 80 pre-existing subsamples was carried out to
get the data ready for our linear classifier.

3.3. Linear Classifier

For this purpose, we used a linear classifier to analyze
the features and patterns of the polygraph signals in each



Table 1. Differences in the second peak between capture
and non-capture amplitudes.
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Figure 3. Lineal classifier weights for the experiment.

situation, determining the presence of specific muscle ac-
tivity related to the phrenic nerve. By comparing the re-
sults of both situations, the phrenic nerve muscle activity
during stimulation could be evaluated and quantified. In
addition, as we can observe in Figure 3, the weights related
to the linear classifier increase in the signal study areas,
which confirms the accurate detection from the classifier.

Achieving a 100% accuracy in detecting phrenic nerve
activity in this dataset validates the hypothesis of estab-
lishing an automated and unbiased protocol for the even-
tual measurement of phrenic nerve muscle activity and its
potential deterioration due to the cryo-ablation procedure
performed in proximity to it.

4. Conclusions

Furthermore, achieving a 100% accuracy in the auto-
matic classification of phrenic nerve muscle activity allows
for early and precise detection of potential conduction im-
pairments in the nerve and accurate assessment of the as-
sociated risk. This, in turn, positions it as a potentially
useful tool to enhance patient safety during this procedure.
Therefore, we can conclude that this study has success-
fully demonstrated the feasibility and effectiveness of us-

ing an automated quantifier for the detection of phrenic
nerve muscle activity during cryo-ablation and its evalua-
tion of the resulting impairment.
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