
  

  

Abstract 

Prognostication in comatose patients after cardiac arrest 

(CA) remains one of the biggest challenges for neurologists in 

the intensive care unit, as it shapes decisions about continuing 

or withdrawing life support. Electroencephalogram (EEG) 

provides valuable and non-invasive insights into patients’ 

neurological status and has been used in many prediction 

models. However, traditional models often view EEG as 

stationary data, neglecting the dynamic patterns of EEG 

signals in response to internal and external perturbations. In 

addition, the importance of clinical data was underestimated 

in previous studies. We, team Data Doctors, took part in 

Predicting Neurological Recovery from Coma After Cardiac 

Arrest: The George B. Moody PhysioNet Challenge 2023, and 

proposed a prediction model based on data fusion, which 

scored 0.322 and ranked 29th in the official phase. We 

introduced a specialist system to combine various machine-

learning frameworks, including a recurrent neural network 

(RNNs) for capturing dynamic EEG features, a convolutional 

neural network (CNNs) for identifying inter-channel EEG 

interactions, and an eXtreme Gradient Boosting (XGBoost) 

algorithm to synthesize these features for outcome prediction. 

The proposed model outperforms each single model, 

demonstrating the potential to improve outcome prediction 

accuracy and reliability by fusing complimentary results from 

different models. 

 

1.      Introduction 
 

Our team took part in Predicting Neurological Recovery 

from Coma After Cardiac Arrest: The George B. Moody 

PhysioNet Challenge 2023, which called on groups to create 

open-source automated systems for predicting patient 

outcomes after cardiac arrest using electroencephalogram 

(EEG) recordings and other data (1, 2). Quantitative analysis 

of EEG background activity provides an alternative prognostic 

tool (3, 4). EEG reflects real-time brain electrical activity and 

is sensitive to cerebral ischemia. Specific EEG patterns 

correlate with neurological outcomes after cardiac arrest. For 

instance, suppression of delta waves and alpha/theta rhythms 

predicts poor prognosis. 

Machine learning applied to quantitative EEG analysis is a 

promising approach for early prognostication of neurological 

outcomes after cardiac arrest. Automated EEG interpretation 

 
  

can provide objective, accurate estimates of the likelihood of 

good cerebral recovery in individual patients to facilitate 

clinical decision-making after resuscitation.  

In addition to using quantitative EEG features, we also 

explored prediction based solely on clinical data from the 

cardiac arrest patients. Clinical variables like age, gender, 

return of spontaneous circulation (ROSC), out-of-hospital 

cardiac arrest (OHCA), shockable rhythm, and targeted 

temperature management (TTM) have established prognostic 

values after cardiac arrest. We developed a separate machine 

learning model using only clinical data, then combined the 

predictions from the EEG models and clinical model. Fusing 

the multimodal results enabled us to leverage complementary 

prognostic information from both neurological and circulatory 

metrics. The ensemble approach of merging predictions from 

the EEG model and clinical model improved overall 

performance compared to either individual model. This 

demonstrates the benefit of synthesizing different data types, 

including both EEG and clinical circulatory arrest features, for 

enhanced prognostication accuracy after cardiac arrest. 

 

2.      Methods  
 

The model was developed using the multi-center cardiac 

arrest dataset of the International Cardiac Arrest EEG 

consortium (ICARE) with 1020 adult patients from seven 

hospitals (5). This dataset includes multimodality monitoring 

data including EEG, oxygen saturation (SpO2), 

electrocardiogram (ECG), electromyography (EMG), and so 

on up to two weeks since ‘return of spontaneous 

circulation’(ROSC). Clinical outcome was determined 

prospectively in two centers by phone interview (at 6 months 

from ROSC), and at the remaining hospitals retrospectively 

through chart review (at 3-6 months from ROSC). Neurologic 

outcomes were assessed using the Cerebral Performance 

Category (CPC) scale (1–5). Good outcome was defined as a 

CPC score of 1 or 2 (minimal to moderate neurologic 

disability), and poor outcome was defined as a CPC score of 

3-5 (severe neurologic disability, persistent coma or 

vegetative state, or death). 

Clinical data collected at admission includes age, sex, 

hospital ID, arrest location (in-hospital or out), cardiac rhythm 

at resuscitation (categorized as shockable or non-shockable), 

and the time interval from cardiac arrest to ROSC. To ensure 

privacy, ages above 89 are coded as "90". Post-arrest 

temperature is typically managed via a closed-loop feedback 
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device (TTM), barring contraindications like severe 

hypotension or delayed admission. Temperature settings 

include 36C, 33C, or unregulated (see Table 1). 

 

 
VFib = Ventricular Fibrillation; TTM = Targeted Temperature Management. 

EEG start time in hours (h) is relative to the time of cardiac arrest. Age and 
EEG data are shown as mean. 

Table 1. Patient characteristics grouped by CPC scores. 

 

Although multiple types of data are monitored, not all the 

data are collected continuously. Fig. 1 illustrates the 

availability of different data types over a period of 72 hours 

for three out of 1020 patients. EEG recordings are initiated 

soon after ROSC and continued up to 14 days post-cardiac 

arrest. Other physiological signals like ECG and EMG have 

more intermittent monitoring. Clinical variables such as age, 

sex, medical history are documented only at admission. This 

highlights the heterogeneous nature of the multimodal dataset, 

with EEG providing continuous quantitative brain monitoring 

while other data types are more sporadically sampled. There 

are some approaches to impute the time series (6, 7). However, 

we assume the discontinuity of data is also an important 

feature, thus no imputation is performed.  

 

 

 

 
Figure 1. Existence of different data for patient 284 (top), 296 

(middle) and 326 (bottom). Red block indicates the 

corresponding data exist at that hour. 

 

Machine learning frameworks such as XGBoost, CNNs, 

and RNNs have consistently exhibited superior performance 

in a broad range of predictive modeling scenarios. However, 

their efficacy tends to wane when applied to datasets that are 

both smaller in size and riddled with noise. To counteract 

these limitations, we propose a specialist system that 

incorporates fusion logic to enhance the predictive capabilities 

of these standard machine learning approaches. 

Three fusion methods have been implemented and 

compared, including weighted sum, Dempster-Shafer theory, 

and fuzzy logic. Weighted sum simply sums predicting 

probability of different models by assigning them different 

weights. Dempster-Shafer theory, also known as evidence 

theory or belief function theory, is a framework for modeling 

uncertainty and reasoning with partial information. It is an 

alternative to traditional probability theory and allows the 

explicit representation of uncertainty and ignorance. Fuzzy 

logic is based on fuzzy set theory, which allows for partial 

membership in sets defined by vague concepts like "tall" or 

"high skill." By using membership functions that map inputs 

to degrees of membership, fuzzy logic systems are capable of 

modeling complex relationships and patterns that elude 

capture by conventional binary logic and statistical methods. 

Consequently, fuzzy logic is particularly well-suited for 

addressing the inherent uncertainties and imprecisions that 

pervade numerous real-world datasets. 

We developed three models to extract complimentary 

information from the dataset. XGBoost is utilized to handle 

patient demographic information, CNNs are utilized to 

scrutinize the frequency spectra, and RNNs are deployed to 

capture the temporal variations inherent in EEG data. 

Specifically, the XGBoost model ingests categorical and 

numerical features like age, gender, and health history to 

predict disease risk. The XGBoost model stands out as a 

highly adaptable, precise, and interpretable tool, offering 

valuable insights into the importance of various features. This 

makes it particularly well-suited for predicting disease risk 

based on a mix of categorical and numerical variables such as 

age, gender, and health history. Moreover, XGBoost has the 

capability to automatically manage missing values, a common 

challenge in healthcare datasets. Several methods have been 

tried to explore the optimal parameters for XGBoost, 

including grid search, random search, and Bayesian 

optimization. The optimal parameters are found by random 

search, which gives {'reg_lambda': 100, 'reg_alpha': 0.1, 

'max_depth': 3, 'learning_rate': 0.001, 'gamma': 0.1, 

'colsample_bytree': 0.3}. 

The CNNs are employed to scrutinize 2D representations of 

EEG frequency data for brain state classification. To construct 

these 2D matrices, we initially calculate the frequency spectra 

of EEG signals on an hourly basis. These are then aggregated 

into a 2D matrix of dimensions 72x512, as illustrated in Fig. 

1. Here, '72' represents a span of 72 hours, and '512' denotes 

the 512 spectral data points computed for each hourly EEG 

segment. Within this matrix, each row signifies the frequency 

spectrum of EEG data for a given hour, while each column 

tracks changes in a specific frequency component over the 

course of 72 hours.  CNNs are particularly effective for 

handling 2D spatial data due to their convolutional layers, 

which contain filters designed to identify spatial patterns and 

features. As these filters are applied across the entire matrix, 

CNNs can discern significant patterns irrespective of their 

spatial location. By applying these filters across the entire 

image, CNNs are able to recognize patterns regardless of 



  

where they appear in the image. We hypothesize that 

variations within specific frequency bands may serve as 

crucial features linked to patient outcomes, thus warranting 

the use of CNNs for data processing. The hyperparameters of 

CNN is determined empirically to achieve the highest 

accuracy. 

 

 
Figure 2. An illustration of structure of data for CNNs 

 

Lastly, the RNN models the sequential changes in entropy 

and complexity of EEG. Several nonlinear parameters related 

to entropy and complexity are calculated for EEG data hourly, 

including Hjorth parameters, relative roughness, and 

decorrelation. RNNs are selected for this task precisely 

because of the capability to process time-dependent data. They 

excel in handling dynamic data types such as text, speech, and 

time series, owing to their recurrent connections. These 

connections enable the retention of information across 

sequential time steps. At each given time step, RNNs ingest 

new input while concurrently updating internal states based on 

both the current inputs and preceding states. This iterative 

process furnishes the RNNs with a form of temporal memory, 

thereby allowing them to capture and learn time-based 

dependencies and relationships. The hyperparameters of 

RNNs is determined empirically to achieve the highest 

accuracy. 

 

 
Figure 3. Structure of proposed machine learning model 

 

The weights for weighted sum method are determined by 

going through all the possible weights for these three models 

within the range of 0 to 1. The fusing probabilities for 

Dempster-Shafer theory are determined by multiplying the 

probabilities for 0 of all three models as the predicting 

probability for 0 and multiplying the probabilities for 1 of all 

three models as the predicting probability for 1, and then 

normalize the results. The fusing process for fuzzy logic is 

much more complex. The first step is to determine the fuzzy 

regions. Here we defined three regions, namely low 

probability to be poor, medium probability to be poor and high 

probability to be poor. Then each output from the three models 

will be assigned a fuzzy value. For example, a prediction 

probability of 0.8 from XGBoost gives a fuzzy value of high 

probability to be poor. After transforming the outputs of three 

models into fuzzy region, we can summarize the fuzzy rules 

for prediction.  

By fuzzifying the inputs to these models, our specialist 

system is able to improve predictive performance across all 

three modalities. The fuzzified demographic data helps 

XGBoost better assess risk gradients, the spectral inputs help 

the CNNs discern nuanced frequency patterns, and the 

temporal inputs allow the RNNs to better detect motif changes 

over time. Our approach demonstrates how data fusion can 

enhance disparate machine learning techniques applied to 

diverse biomedical data types. 

 

3.      Results 

 
For analyzing risk factors, various statistical tests were 

employed to compare all the clinical features among different 

outcomes. Age and ROSC were found to be significantly 

different between different outcomes. For the age, elder 

individuals tended to have poorer outcomes. For the ROSC, a 

longer duration of ROSC is significantly associated with 

poorer outcomes.  

 We then explored the importance of the top two features by 

comparing the classification accuracy using the top two 

features and all features. The XGBoost model used here is 

using the default parameters rather than optimized parameters. 

From table 2 we can find that using two features have the 

similar performance as using all the features, suggesting that 

it is enough to conclude ages and ROSC as features when 

design prediction models based on clinical data. 

 

 Accuracy F1 score 

Two features 0.5934 0.6992 

All features 0.6264 0.7018 

Table 2. Performance difference between using two features 

and all features. 

 

We first compared the fusing results of weighted sum, 

dempster-Shafer theory, and fuzzy logic. From table 3, 

weighted sum outperforms the other two and thus was chosen 

to construct the specialist system.  

 
Fusing 

methods 

Weighted 

Sum 

Dempster-

Shafer 

Fuzzy 

Logic 

Accuracy 0.7857 0.3242 0.3956 

Specificity 0.5254 1.0000 1.0000 

F1 score 0.8517 0 0.1912 

Table3. Comparison of performance of different fusing 

methods. 

We then compare the performance of XGBoost, CNN, 

RNN and fusing results. From table 4 and fig. 4 we can see 

that there is a significant improvement in performance by 



  

fusing the prediction results from the three models. The 

challenge scores for each single model and fusing model have 

been calculated. However, only score for XGBoost has been 

obtained due to excessive computations required to get 

features for CNN and RNN. XGBoost scores 0.359 on the 

training set, 0.209 on the validation set, and 0.322 on the test 

set. 

 

 
Figure 4. ROC curves for XGBoost, CNN, RNN and fusing 

results. 

Models XGBoost CNN RNN 
Fusing 

Results 

Accuracy 0.7033 0.6648 0.6374 0.7857 

Precision 0.7674 0.7214 0.7244 0.8000 

Recall 0.8049 0.8211 0.7480 0.9106 

Specificity 0.4915 0.3390 0.4068 0.5254 

F1 score 0.7857 0.7681 0.7360 0.8517 

Challenge 

Score 
0.3220 N/A N/A N/A 

Table 4. Comparison of performance among XGBoost, 

CNN, RNN and fusing results. 

 

5. Conclusion 
 

Early testing shows that adding the specialist system 

improves predictive accuracy across multiple datasets and 

modeling tasks. The specialist system appears to act as a 

regularizer that makes the XGBoost, CNN, and RNN models 

more robust to noise and variability. We hypothesize the 

specialist system allows the models to better learn subtle 

nuances and patterns that are obscured when using only crisp, 

deterministic values. 

In this work, we detail the architecture and training process 

of our proposed specialist system. We present experimental 

results demonstrating improved accuracy on several 

benchmark datasets and models. The ability to enhance state-

of-the-art techniques like XGBoost, CNNs, and RNNs by 

fusion shows the potential of hybrid intelligent systems. Our 

specialist system provides a simple but powerful approach to 

improving predictive modeling performance. 

There are some limitations though. First, the overall 

performance is not high. This can be a result of some 

complexity parameters that require a long time to calculate, 

including Lyapunov exponent, multiscale entropy and 

Lempel-Ziv complexity, are abandoned due to limited running 

time. The performance of RNN can be further improved by 

incorporating more nonlinear features. Second, both RNN and 

CNN are affected by the missing data. Therefore, both learn 

from the pattern of missing data. This can offset the 

complimentary effects. Third, we failed to get challenge 

scores for RNN, CNN and fusing results due to limited 

computing resources and time limitations. Finally, if we 

consider a correct prediction as either of the models give a 

correct prediction, the accuracy is 0.9286. However, the fusing 

accuracy we’ve got is 0.7857. There should exist fusing 

architecture that can further increase the prediction 

performance. 
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